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Préambule

Ce manuscrit est un recueil des différents travaux de recherche effectués depuis ma nomination à
Angers il y a 5 ans. L’objectif est de tenter d’obtenir, autant que possible, un ensemble cohérent et
équilibré entre résultats théoriques et applications. Le point de départ de ce manuscrit est purement
théorique :

Quelle est la vitesse minimax en classification avec erreurs dans les variables ?

Cette question, posée presque innocemment par Clément Marteau aux rencontres de statistiques ma-
thématiques du C.I.R.M. en 2009, nous a occupé près de 2 années entières, pour une réponse partielle
dans [L3] et [L8]. En deux mots : hypothèse de marge, vitesses rapides et problèmes inverses ne font pas
forcément bon ménage. De fil en aiguille, la généralisation vers d’autres problèmes d’apprentissage ([L4]),
puis le passage au cas non-supervisé ([L10], [L16]) ont permis l’écriture d’un algorithme pour résoudre le
problème de segmentation (ou clustering) de données bruitées. Restait la partie programmation, que j’ai
confié à Camille Brunet ([L10]), puis à Simon Souchet ([L12]), grâce à un premier contrat de valorisation.
Cette belle histoire est avant tout une aventure humaine : de la recherche de la bonne famille d’hypothèses
vérifiant le triumvirat marge-régularité-haute fréquence avec Clément Marteau, ancien collègue de thèse,
aux discussions algorithmiques avec Camille Brunet, qui a mis au point une version Beta de l’algorithme
en à peine 4 mois.

A ce stade, nous sommes à la fin du Chapitre 2, et nous n’avons pas encore résolu le problème majeur
de notre algorithme : le choix de la fenêtre. Face à un problème avec erreurs dans les variables, un excès
de risque, et un compromis biais-variance à l’origine des bornes supérieures, la méthode de Lepski
nous a paru idoine. En collaboration avec Michaël Chichignoud, l’autre ancien collègue phocéen, nous
proposons une méthode adaptative qui utilise l’heuristique de Lepski et la comparaison d’estimateurs
([1]). Dans notre cadre, les estimateurs sont des risques empiriques et les résultats sont des vitesses
rapides adaptatives pour l’excès de risque. Et puis les choses s’accélèrent. Pour traiter le cas des fonctions
anisotropes, il faut considérer des ensembles de fenêtres plus vastes. Dans le cadre du bruit blanc ou de
l’estimation de densité, on connâıt la méthode de Goldenshluger et Lepski, mais son application directe
aux cas des vitesses rapides n’est pas immédiate. L’idée est alors de changer de critère, et de considérer
le gradient du risque pour mesurer la performance des estimateurs. Tout l’intérêt de ce critère réside
en une phrase : une vitesse lente pour le gradient abouti à une vitesse rapide pour l’excès de risque,
à condition que la perte soit suffisamment lisse ([L7]). On obtient donc in fine des résultats adaptatifs
optimaux dans le cadre anisotrope en clustering, et comme corollaire immédiat, les premières vitesses
minimax adaptatives en norme Lp pour des estimateurs non-linéaires dans [L7].

Les résultats des Chapitre 2 et 3 forment une première contribution du minimax à l’algorithme du
problème de classification à partir de données indirectes. Il reste de nombreuses interrogations, qui seront
abordées dans le futur, pour qui s’intéresse à ce sujet très vaste. La fin de ce mémoire liste quelques
problèmes ouverts, qui découlent de l’écriture de cette partie du mémoire.

Début septembre 2013, en obtenant un congés pour recherche, je me suis dirigé vers une autre
thématique : la prévision de suites individuelles. Là encore, c’est une rencontre, celle de Sébastien Ger-
chinovitz à Nantes, qui m’a convaincu que ce sujet valait la peine d’être exploré. Le dernier chapitre
théorique de cette habilitation propose donc un premier tour d’horizon de ma modeste contribution dans
ce domaine. La question posée est la suivante :

Peut-on proposer un cadre non-supervisé à la prédiction de suites individuelles ?
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Autrement dit, que se passe-t’il dans le problème de prédiction de suites individuelles quand on n’a pas
accès à un ensemble d’experts ? Cette question m’a vite dirigé vers les résultats de Jean-Yves Audibert qui
propose de traiter de manière unifiée les problèmes en ligne et les problèmes statistiques traditionnels
(c’est-à-dire i.i.d. ou batch). La simple application de ces résultats, et l’introduction de lois a priori
particulières issus de la statistique bayésienne en grande dimension m’ont permis d’obtenir des bornes de
regrets pour un algorithme séquentiel de clustering en ligne ([L9]). Cet algorithme n’a besoin d’aucune
connaissance a priori sur le nombres de classes, ni sur des avis d’éventuels experts. Cette nouvelle
direction m’a occupé ces dernièrs mois : l’obtention d’un algorithme complètement automatique, ainsi
qu’une borne inférieure sur le regret, sont aussi étudiés dans ce manuscrit. L’extension à un cadre de
bi-clustering ([L11]) permet également un nouveau regard sur le problème de complétion de matrices et
la construction de systèmes de recommandations en ligne.

Enfin, ma nomination à Angers m’a permis de nouer de multiples contacts avec des chercheurs
d’autres disciplines. Ces collaborations sont résumées dans le dernier chapitre de ce manuscrit, où l’on
s’éloigne un peu des statistiques mathématiques pour résoudre des problèmes biologiques du vivant.
La recherche de QTL (Quantitative Trait Locus) dans une population de rosiers ([L5], [L17]) est le
premier sujet que j’ai abordé avec Laurence Hibrant, Koji Kawamura et toute l’équipe de génétique et
horticulture de l’I.N.R.A. En utilisant l’analyse en composante principale à noyaux, nous avons détecté
un nouveau QTL qui explique la variabilité d’architecture d’inflorescence d’une population de rosiers
Rosa Wichurana. Actuellement, en collaboration avec ”Les amies de la Roseraie du Val-de-Marne”, nous
procédons à un vrai travail de taxinomie d’une classe de rosiers appelés rosiers Noisettes, découvert par
Louis Claude Noisette en 1814, grâce à un tableau de données de 67 variables décrivant les caractères
phénotypiques de ces rosiers. Plus récemment, j’ai aussi pris contact avec le pôle santé de l’université
et le monde industriel. Ces collaborations montrent toute la diversité des applications potentielles des
statistiques. La fin du dernier chapitre aborde ces problématiques de manière synthétique.

La synthèse de ces différents travaux est précédée d’un chapitre introductif en français présentant le
cadre mathématique. Ce chapitre confronte notamment les deux paradigmes de l’apprentissage : statis-
tique ou en ligne. Ce chapitre est aussi rédigé pour tout mathématicien curieux qui, au fond, n’a pas une
idée très claire de ce qu’est, et ce que devient les statistiques depuis le début du XXème siècle. En un mot,
les statistiques tentent depuis plus d’un siècle de s’éloigner des modèles trop restictifs, en considérant suc-
cessivement des modèles gaussiens, puis paramétriques, puis non-paramétriques, jusqu’à récemment des
modèles sans aucune hypothèse probabiliste. Ainsi, dans cette courte introduction, quelques résultats
fondamentaux (inégalités de Vapnik, bornes de regrets) sont énoncés, au sujet de quelques méthodes
séminales (minimiseur du risque empirique, mélange à poids exponentiels).

Les résultats majeurs de ce travail seront accompagnés de schémas de preuve, où les aspects techniques
seront mis de côté pour alléger la rédaction. Les preuves complètes sont disponibles en ligne dans les
articles en questions (à chaque section est associé un ou plusieurs articles).

Enfin, les dernières pages compilent les problèmes ouverts auxquels j’ai pensé lors de l’écriture de ce
mémoire. La rédaction est un travail parfois fastidieux mais qui permet de prendre du recul et de faire le
point sur l’état de la recherche. Ainsi, comme le montre la quinzaine de problèmes ouverts, il y a encore
du pain sur la planche pour les prochaines années !
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Chapitre 1

Introduction générale

Ce chapitre introduit le cadre mathématique de ce manuscrit, de l’apprentissage statistique à l’ap-
prentissage en ligne. On verra dans cette introduction que des liens assez forts existent entre ces deux
types d’apprentissage de prime abord bien distincts. Ces liens verront le jour à la lumière du lemme
d’Hoeffding, du phénomène des vitesses rapides, ou encore de l’adaptation.

Le problème de l’adaptation découle de toute procédure statistique. Cela concerne la calibration
des méthodes, qui possèdent - sauf exception - des paramètres à fixer. Cette problématique est aujour-
d’hui encore très populaire en statistique mathématique et en apprentissage. On présentera les travaux
pionniers à ce sujet et l’application à des problèmes d’apprentissage.

Enfin, ce chapitre sera l’occasion d’introduire les principaux résultats de ce manuscrit, de l’appren-
tissage statistique de problème inverse à l’apprentissage en ligne, en passant par l’adaptation, le choix
de la fenêtre et la considération de problèmes réels.

Contents

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
1.1 L’apprentissage statistique et l’apprentissage en ligne . . . . . . . . . . . . . 1

1.2 Localisation, marge et vitesses rapides . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 La théorie PAC-Bayésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Adaptation, sélection de fenêtres . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Description synthétique des différents chapitres . . . . . . . . . . . . . . . . . 9

1.1 L’apprentissage statistique et l’apprentissage en ligne

Généralités
La théorie de l’apprentissage s’intéresse à la construction et à l’évaluation d’algorithmes d’aide à la

décision basés sur une suite d’observations. Deux paradigmes dominent les travaux mathématiques sur
le sujet. Ils concernent la collecte de cette suite d’observations :

— l’apprentissage statistique (statistical learning) considère un échantillon de n variables aléatoires
généralement indépendantes et identiquement distribuées (i.i.d.). L’algorithme prend une décision
(estimation, classification, test) à partir de cette suite d’observations 1. On doit ses fondements
mathématiques aux travaux de Vladimir Vapnik et Alexei Chervonenkis (VC theory, voir Vapnik
and Chervonenkis [1971], et aussi Vapnik [2000]). On peut citer Devroye, Györfi, and Lugosi [1996]
pour un ouvrage introductif sur le sujet. Depuis les prémices de la statistique mathématique
introduite au début du XXème siècle, la tendance actuelle est de s’éloigner des modèles trop
restrictifs.

— l’apprentissage en ligne (online learning) considère les observations arrivant de manière séquentielle,
et très souvent sans aucune hypothèse probabiliste. L’algorithme est alors séquentiel et répond
à chaque observation, à la manière d’un jeu contre la nature. Cette discipline est à l’intersection
de la statistique, de l’informatique et de la théorie des jeux. Ses travaux fondateurs sont dus à

1. On parle aussi du mode ”batch”, puisqu’on prend une décision à partir de ce paquet d’observations.
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Hannan (Hannan [1957]) ou plus récemment Littlestone et Warmuth (Littlestone and Warmuth
[1994]). Pour un survol des principaux résultats sur le sujet, on peut citer Cesa-Bianchi and Lugosi
[2006]. Généralement, les algorithmes proposent un mélange d’avis d’experts mis à jour à chaque
nouvelle observation.

Les observations sont le point de départ du statisticien. Comme on vient de le voir, deux points de
vue bien différents sont proposés en apprentissage pour modéliser cette collecte d’informations. Il s’en
suit deux manières distinctes de (1) répondre à la problématique d’aide à la décision et (2) mesurer les
performances des algorithmes sous-jacents.

En apprentissage statistique, on considère un échantillon i.i.d. de variables aléatoiresDn := {Z1, . . . ,Zn}
de loi inconnue P . Le risque d’une règle de décision f (estimateur, classifieur, test) est mesuré par une
fonction de perte intégrée sous la loi P , c’est-à-dire par la quantité :

R(f) = EP `(f,Z),(1.1)

où `(f, z) mesure la perte de f associée au point d’observation z et Z est une variable aléatoire de
loi P indépendante de Dn. Ce risque est aussi appelé erreur de généralisation. Étant en présence d’un
phénomène stationnaire, c’est la perte moyenne qu’engendrera f si l’on observe une nouvelle variable
aléatoire Z de loi P indépendante de Dn 2.

En apprentissage en ligne, le risque (1.1) n’est pas disponible puisqu’on ne suppose aucun modèle
probabiliste sur la suite d’observations. A chaque tour t = 1, . . . , T , où T est appelé l’horizon, on va
proposer une décision. Dans le jeu de prédiction avec avis d’experts, à chaque tour t, on veut prédire
zt à partir des observations passées z1, . . . , zt−1 et d’avis d’experts pt,1, . . . , pt,N , où N est le nombre
d’experts. A la fin du jeu, la performance de notre algorithme est mesuré par le regret :

T∑
t=1

`(ẑt, zt)− min
k=1,...,N

T∑
t=1

`(pt,k, zt),(1.2)

où `(z′, z) est la perte de z′ associée à l’observation z. Le regret mesure la différence entre la perte
cumulée de l’algorithme et la perte cumulée du meilleur expert parmi les N experts qui donnent leur
avis à chaque tour. Cette notion de perte relative est elle aussi présente en apprentissage statistique, où
l’on considère habituellement l’excès de risque :

R(f)−R(f?),(1.3)

où f? est la meilleure règle de décision - appelée règle de Bayes - pour le problème considéré. L’intro-
duction de cette quantité permet de tenir compte de la difficulté intrinsèque du problème, c’est-à-dire
indépendamment de la méthode utilisée.

Deux résultats clés
Les résultats obtenus en apprentissage dépendent du type d’apprentissage considéré : statistique ou

en ligne. En apprentissage statistique, on s’intéresse à contrôler l’excès de risque (1.3) alors qu’en ap-
prentissage en ligne, on veut contrôler le regret (1.2). Ces deux problèmes sont sensiblement différents
et aboutissent à des méthodes différentes.

Si l’on dispose d’un échantillon i.i.d. Dn = {Z1, . . . ,Zn}, et d’un ensemble d’hypothèses F , un
candidat naturel est le minimiseur du risque empirique (ERM) :

f̂ := arg min
f∈F

R̂(f) avec R̂(f) :=
1

n

n∑
i=1

`(f,Zi).(1.4)

En effet, on peut montrer facilement que f̂ vérifie par définition :

R(f̂)−R(f?F ) ≤ 2 sup
f∈F

∣∣∣R(f)− R̂(f)
∣∣∣ ,(1.5)

2. Au contraire, l’erreur d’apprentissage est l’erreur calculée sur l’échantillon Dn, en remplaçant la mesure P par la
mesure empirique Pn = 1/n

∑
δZi dans (1.1). Minimiser l’erreur d’apprentissage peut conduire au phénomène de sur-

apprentissage.
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où f?F est le minimiseur du risque R(·) sur F . Cette inégalité motive l’introduction des processus empi-
riques et l’étude de lois des grands nombres uniformes. Le résultat suivant assure une inégalité en grande
probabilité pour l’excès de risque de l’estimateur (1.4) dans le cadre de la classification binaire.

Théorème 1 (Inégalité de Vapnik (1971)). Soit Dn = {(X1, Y1), . . . , (Xn, Yn)} un échantillon i.i.d. de
loi P sur Rd × {0, 1}. Soit F un ensemble de classifieurs de la forme f : Rd → {0, 1}. Alors, on a :

PDn

(
sup
f∈F

∣∣∣R(f)− R̂(f)
∣∣∣ > ε

)
≤ 8S(F , n)e−

nε2

32 ,

où S(F , n) est le nième coefficient d’éclatement de F . De plus, si la dimension de Vapnik de F , notée
VC(F) est finie, on a :

EDnR(f̂)−R(f?F ) ≤ 16

√
4 + VC(F) log n

2n
.

Cette version de l’inégalité de Vapnik est exposée dans Devroye, Györfi, and Lugosi [1996]. L’inégalité
remonte à Vapnik and Chervonenkis [1971].

Si l’on considère un jeu séquentiel où à chaque tour t ∈ N∗, nous disposons des observations passées
z1, . . . , zt−1 et d’avis d’experts pt,1, . . . , pt,N , l’approche la plus répandue est de mélanger les avis des
N experts ou de suivre le vote majoritaire. Littlestone and Warmuth [1994] s’intéressent à ces deux
alternatives et introduisent par exemple, à chaque tour t = 1, . . . , T , la prédiction :

ẑt =

N∑
k=1

wk,t−1pt,k avec wk,t−1 =
e−λ

∑t−1
u=1 `(pu,k,zu)

Wt−1
,(1.6)

où Wt−1 est tel que
∑
wk,t−1 = 1 et λ > 0 est un paramètre de température inverse. On peut montrer

le résultat suivant :

Théorème 2 (Borne de regret). Soit Y ⊆ [0, 1] et `(·, z) convexe quel que soit z ∈ Y. Alors la prévision
à poids exponentiels (1.6) vérifie :

T∑
t=1

`(ẑt, zt)− min
k=1,...,N

T∑
t=1

`(pt,k, yt) ≤
logN

λ
+
λT

8
=

√
T logN

2
,(1.7)

où la dernière égalité a lieu en prenant λ∗ =
√

(8 logN)/T .

Ce résultat est présenté dans Cesa-Bianchi and Lugosi [2006]. Il est intéressant de comparer le
Théorème 1 au Théorème 2. A première vue, ces résultats sont sensiblement différents : l’un est proba-
biliste, et a lieu avec grande probabilité (ou en espérance), par rapport à la loi de l’échantillon. L’autre
est entièrement déterministe, et a lieu pour toute suite d’observations. Cela dit, ces deux résultats sont
basés sur le même outil probabiliste : le lemme de Hoeffding.

Lemme 1. Soit X une variable aléatoire réelle telle qu’il existe deux réels a, b tels que a ≤ X ≤ b p.s.
Alors :

logEeλX ≤ λEX +
λ2(b− a)2

8
.

Ce lemme est à l’origine de l’inégalité de Hoeffding, qui concerne la concentration d’une somme de
variables aléatoires i.i.d. vers son espérance (inégalité de concentration). En appliquant cette inégalité à
R̂(f), on peut montrer l’inégalité de Vapnik en utilisant (1.5) et l’hypothèse VC(F) <∞.

De manière plus surprenante, bien que la suite (zt) soit déterministe, la preuve de l’inégalité (1.7)
utilise le Lemme 1 de la manière suivante. On peut noter que (1.6) est un mélange convexe de la suite
pt = (pt,k)

N
k=1. Ainsi, on peut écrire, en utilisant le lemme pour X de loi discrète (wt,k)

N
k=1 à valeurs

dans (pt,k)
N
k=1 :

1

λ
log

Wt

Wt−1
=

1

λ
logEwte

−λ`(pt,zt) ≤ −Ewt`(pt, zt) +
λ

8
≤ −`(ẑt, zt) +

λ

8
,
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où l’on a utilisé la convexité de ẑ 7→ `(ẑ, z) pour obtenir la dernière inégalité. Cette série d’inégalités est
à l’origine de la borne du Théorème 2 (Cesa-Bianchi and Lugosi [2006] pour une preuve complète).

En première conclusion, bien qu’a priori très distincts, apprentissage statistique et apprentissage en
ligne utilisent les mêmes fondements probabilistes : la concentration de la mesure. L’inégalité (1.5) motive
la théorie des processus empiriques, qui est au centre des bornes d’excès de risque en apprentissage
statistique. En apprentissage en ligne, on peut considérer que la prise de décision comporte un aléa,
puisqu’on utilise des mélanges d’experts (ou plus généralement dans la suite des estimateurs randomisés).

1.2 Localisation, marge et vitesses rapides

La section précédente a présenté deux résultats fondateurs de la théorie de l’apprentissage. L’inégalité
de Vapnik induit une convergence de l’excès de risque vers 0 à vitesse log n/

√
n alors que le Théorème

2 entrâıne une convergence de la perte moyenne de l’algorithme (1.6) vers la perte moyenne du meilleur
expert à vitesse 1/

√
T (en normalisant l’inégalité par le nombre de tours T ). Dans cette section, on va

voir que des vitesses de convergence plus rapides sont possibles sous certaines hypothèses.

Une procédure de localisation
Dans le Chapitre 2 de ce manuscrit, on veut établir des bornes pour l’excès de risque (1.3), où F est

un ensemble très souvent fonctionnel (de dimension infinie) et VC(F) est remplacée par des hypothèses
sur l’entropie de F . Dans ce cadre, on utilisera un raffinement de l’inégalité de Vapnik, en réduisant le
supremum dans l’inégalité (1.5) aux fonctions f ∈ F(δ) := {f ∈ F : R(f)−R(f?F ) ≤ δ} pour δ > 0. En
effet, on peut remarquer que si `(f, z) est à valeurs dans [0, δ0] :

R(f̂)−R(f?F ) ≤ sup
f∈F(δ0)

∣∣∣(R− R̂)(f − f?F )
∣∣∣ := Ψn(δ0)

≤ EΨn(δ0) + Un(δ0, t),

où la dernière inégalité a lieu avec probabilité 1−e-t grâce à une inégalité de concentration de Talagrand
(Talagrand [1995]). Le terme Un(δ, t) s’écrit par exemple en utilisant la version de Bousquet (Bousquet
[2002]) :

Un(δ, t) =

√
2t

n
[σ2(F) + (1 + δ0)EΨn(δ)] +

t

3n
,

où σ2(F) = supF VarP [`(f,Z)− `(f?F ,Z)]. On peut alors poser δ1 = EΨn(δ0) + Un(δ0, t) et répéter la
manœuvre pour obtenir après N itérations la borne suivante, avec probabilité 1−Ne-t :

R(f̂)−R(f?F ) ≤ EΨn(δN−1) + Un(δN−1, t) = δN .

Avec un choix de N assez grand, la détermination d’un contrôle optimal du membre de gauche revient
à résoudre l’équation du point fixe ψn(δ) = δ où ψn(δ) = EΨn(δ) + Un(δ, t).

Cette heuristique est à l’origine des vitesses de convergence rapides, c’est-à-dire plus rapide que 1/
√
n

en apprentissage statistique. En effet, en résolvant l’équation ci-dessus, on peut obtenir avec grande
probabilité :

R(f̂)−R(f?F ) . n−κ/(2κ+ρ−1),(1.8)

où ρ > 0 mesure la complexité de F en terme de vitesse d’entropie 3 et où l’on suppose l’existence d’un
paramètre de marge κ ≥ 1 tel que :

VarP [`(f,Z)− `(f?F ,Z)] . [R(f)−R(f?F )]1/κ .(1.9)

L’inégalité ci-dessus est centrale dans la procédure de localisation pour majorer la variance σ2(F) qui
apparâıt dans l’inégalité de concentration. Cela permet d’obtenir une borne supérieure de Un(δ, t) et

3. Le paramètre ρ permet de contrôler la complexité de la classe F de manière à majorer le terme EΨn(δ) grâce à des
techniques de châınage.
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finalement des vitesses de convergence rapides. De nombreux travaux ont établi des vitesses de conver-
gence de ce type en apprentissage sous des hypothèses de marge. En classification binaire, on peut citer
les travaux précurseurs de Mammen and Tsybakov [1999], Tsybakov [2004], Tsybakov and van de Geer
[2005], mais aussi Massart and Nédélec [2006], Blanchard, Bousquet, and Massart [2008], Blanchard, Lu-
gosi, and Vayatis [2003] ou encore Bartlett and Mendelson [2006] ou Bartlett, Bousquet, and Mendelson
[2005]. Les travaux les plus proches de la méthode de localisation présentée ici remontent à Koltchinskii
and Panchenko [2000] (voir aussi Koltchinskii [2006]).

Le gradient comme alternative
Dans ce mémoire, on présente un autre moyen d’obtenir des vitesses rapides pour l’excès de risque

lorsque dim F <∞. Dans ce cas, on introduit un nouveau critère de performances pour le minimiseur du
risque empirique (1.4) appelé le gradient de l’excès de risque. Cette quantité est définie dans le Chapitre
3 par :

|G(fθ)−G(fθ?)|2 = |∇R(fθ)−∇R(fθ?)|2,

où ∇R(fθ) est le gradient de l’application θ 7→ R(fθ). La notation fθ signifie que chaque élément de F
est une fonction qui ne dépend que d’un nombre fini de paramètre θ ∈ Rm. L’introduction du gradient du
risque va nous permettre d’obtenir un contrôle de l’excès de risque grâce à l’inégalité suivante (Lemme
5 du Chapitre 3) : √

R(fθ)−R(fθ?) . λ
−1
min|G(fθ)−G(fθ?)|2,(1.10)

où λmin est la plus petite valeur propre de la Hésienne HR du risque, où θ 7→ R(fθ) est supposé de
classe C2(U) et U ⊂ Rm est un voisinage de θ?. Cette inégalité, basée sur la régularité du risque, permet
d’obtenir cette série d’inégalités :√

R(f
θ̂
)−R(fθ?) . |G(f

θ̂
)−G(fθ?)|2 ≤ sup

θ∈U

∣∣∣Ĝ(fθ)−G(fθ)
∣∣∣ . n−1/2,(1.11)

où f
θ̂

est défini en (1.4) et supposé proche de fθ? . Ainsi, on remarque qu’en utilisant (1.11), l’obtention
de vitesses rapides pour l’excès de risque est assurée grâce à une simple inégalité de Vapnik du type (1.5).
La machinerie de la localisation et l’hypothèse de marge (1.9) ne sont donc plus nécessaires à l’obtention
de vitesses de convergence rapides.

Le cas de l’apprentissage en ligne
L’obtention de vitesses rapides en apprentissage en ligne est antérieure aux travaux de Mammen

and Tsybakov [1999] en classification. En effet, dès les travaux de Vovk [2001], des bornes de regret
indépendantes de T ont été obtenues pour la perte des moindres carrés. Des résultats similaires sont
obtenus sous des hypothèses très fortes sur la perte dans Haussler, Kivinen, and Warmuth [1998]. Ces
hypothèses apparaissent sous plusieurs formes dans la littérature, et l’on peut noter des similitudes avec
le cadre statistique précédent. En effet, du point de vue minimax, nous savons que les vitesses optimales
en apprentissage en ligne dépendent de la régularité de la fonction de perte. Avec des hypothèses faibles
sur la régularité de la perte, Haussler, Kivinen, and Warmuth [1998] montrent de manière générale que :

(1 + o(1))cL
√
T logN ≤ inf

ẑt
sup
zt,pt

T∑
t=1

{
`(ẑt, zt)− min

k=1,...,N

T∑
t=1

`(pt,k, zt)

}
≤ cL

√
T logN.

Ces bornes avaient déjà été démontrées par Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and
Warmuth [1997] pour la perte logarithmique. Les résultats de Haussler, Kivinen, and Warmuth [1998]
sont plus généraux, et proposent aussi un regret indépendant de T sous des conditions spécifiques (dont
une perte deux fois différentiable) de la forme :

(1 + o(1))cL
√

logN ≤ inf
ẑt

sup
zt

T∑
t=1

{
`(ẑt, zt)− min

k=1,...,N

T∑
t=1

`(pt,k, zt)

}
≤ cL

√
logN.
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Un regard attentif sur la preuve de la première inégalité (appelée borne inférieure) nous montre que pour
obtenir un résultat de cette nature, Haussler, Kivinen, and Warmuth [1998] supposent l’existence d’un
unique minimiseur du risque, où le supremum ci-dessus est minoré par une espérance (voir le Chapitre
4 pour ces aspects minimax). Cette hypothèse est très proche d’une Hessienne définie-positive dans
l’approche du gradient. Des bornes similaires du regret (indépendantes de T ) sont démontrées dans Cesa-
Bianchi and Lugosi [2006] lorsque la fonction ẑ 7→ e−λ`(ẑ,z) est concave, ce qui reste bien une hypothèse
de régularité sur la perte, et notamment sur le signe de sa dérivée seconde. Dans Audibert [2009], une
hypothèse de variance est utilisée pour obtenir des résultats similaires (Théorème 4 ci-dessous).

Plus récemment, Rakhlin, Sridharan, and Tewari [2010] s’intéressent aux procédures de localisation
décrites au début de la section dans un contexte d’apprentissage en ligne. En effet, dans le cadre de la
prévision de suites individuelles, on peut utiliser des techniques de localisation pour obtenir des vitesses
de convergence rapides. Dans ce cas, la complexité étudiée dans Rakhlin, Sridharan, and Tewari [2010]
est une version séquentielle de EΨn(δ) (complexité de Rademacher locale séquentielle).

1.3 La théorie PAC-Bayésienne

L’approche PAC-Bayésienne garantit les performances de règles de décisions randomisées. Les résultats
ont lieu sans aucune hypothèse sur la suite d’observations Dn = {Z1, . . . ,Zn}, outre l’hypothèse i.i.d.
de l’apprentissage statistique. L’approche PAC-Bayésienne diffère en ce sens de l’approche Bayésienne
classique où les résultats sont obtenus sous l’hypothèse d’une loi a priori.

L’inégalité de Mac Allester
Les fondements de l’approche PAC-Bayésienne sont dus aux travaux de Mac Allester (voir Mac Allester

[1998]). Le principe de l’approche PAC-Bayésienne est de construire une règle de décision randomisée
f ∼ ρ, où ρ := ρ(Z1, . . . ,Zn) est une mesure aléatoire définie sur l’ensemble F . On veut établir des
résultats du type :

∀ε > 0, ∀π ∈M+
1 (F), PDn(Ef∼ρR(f) ≤ B(ρ, π)) ≥ 1− ε.(1.12)

Contrairement à l’inégalité de Vapnik qui utilise la théorie des processus empiriques, dans la théorie
PAC-Bayésienne, un rôle majeur est joué par la divergence de Kullback K(ρ, π). En effet, la relation de
dualité convexe suivante est l’argument majeur de la théorie PAC-Bayésienne 4 (on peut citer Rockafellar
[1970] pour les fondements issus de l’analyse convexe) :

logEf∼πeh(f) = sup
ρ∈M+

1 (F)

{Ef∼ρh(f)−K(ρ, π)} .

Par exemple, l’égalité précédente est le principal ingrédient du théorème suivant, souvent présenté comme
un résultat pionnier de la théorie PAC-Bayésienne.

Théorème 3 (Mac Allester [1998]). Soit Dn = {Z1, . . . ,Zn} un échantillon i.i.d. de loi P , F un ensemble
de règles de décision et `(f, ·) à valeurs dans [0, 1]. Avec les notations de la section précédente, quel que
soit ε > 0, pour tout prior π ∈M+

1 (F), avec probabilité (sur l’échantillon Dn) au moins 1− ε, quel que
soit ρ ∈M+

1 (F) :

Ef∼ρR(f) ≤ Ef∼ρR̂(f) +

√
log(4nε−1) +K(ρ, π)

2n− 1
.

Ce théorème est intéressant ici pour deux raisons. Tout d’abord, sa preuve fait appel à des outils
alternatifs à la théorie des processus empiriques et aux travaux de Vapnik et Chervonenkis. Ces outils
constituent le fondement théorique des résultats d’apprentissage en ligne, et notamment de la prédiction
de suites individuelles. On pourra se référer à Seeger [2008] pour une preuve élégante utilisant successi-
vement l’inégalité de Markov, la formule de dualité ci-dessus et le Lemme 1, comme dans la preuve du
Théorème 2 ! Enfin, ce résultat motive l’utilisation de poids exponentiels du type (1.6) en apprentissage.

4. Dans la formule de dualité, Ef∼ρh(f) = supA∈R min(A, h(f)), et par convention le membre de droite vaut −∞ lorsque
K(ρ, π) = +∞ (voir par exemple Catoni [2001].)
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En effet, le Théorème 3 a lieu pour toute mesure ρ. Il est donc naturel de chercher l’expression de ρ
qui minimise le membre de droite de la borne ci-dessus. La mesure ρ qui réalise ce minimum n’est autre
qu’une mesure de Gibbs de la forme :

dρ̂(f) :=
e−λR̂(f)

Wπ
dπ(f),(1.13)

où Wπ est la constante de normalisation et λ > 0 est un paramètre de température (inverse).

Quelques résultats récents de la théorie PAC-Bayésienne
Depuis les travaux de Mac-Allester, de nombreux auteurs ont obtenu des résultats PAC-Bayésiens en

apprentissage statistique. L’ouvrage d’Olivier Catoni (Catoni [2001]) propose des raffinements de cette
inégalité, en utilisant l’inégalité de Bernstein par exemple. Plus récemment, Audibert [2009] a montré une
inégalité de la même forme pour un algorithme de type moyenne miroir (mirror averaging). On présente
cette approche dans la suite de cette section qui sera utilisée dans le Chapitre 4 en apprentissage en
ligne. En effet, ces travaux permettent de traiter de manière unifiée les bornes d’excès de risque en
apprentissage statistique (avec parfois des résultats plus fins) et les bornes de regrets en apprentissage
en ligne. On peut déjà conclure que c’est bien la théorie PAC-Bayésienne, inspirée des travaux de Mac-
Allester en apprentissage statistique, qui constitue les fondements théoriques de la prévision de suites
individuelles.

On considère une suite déterministe z1, . . . , zT ∈ R où T est l’horizon connu du statisticien, un
ensemble de règles de décision F et une fonction de perte `(f, z) qui mesure la perte de f au point
d’observation z. Dans ce cadre en ligne et déterministe, la théorie PAC-Bayésienne de Audibert [2009]
propose à chaque tour t de construire une fonction f̂t ∼ ρ̂t où ρ̂t := ρ̂t(z1, . . . , zt−1, f̂1, . . . , f̂t−1) est une
mesure telle que E(ρ̂1,...,ρ̂t)`(f̂t, zt) soit petite. Plus précisément, l’algorithme ainsi construit satisfait la
borne de regret suivante :

Théorème 4 (Audibert [2009]). Soit z1, . . . , zT une suite déterministe et F un ensemble de règles de
décision. Alors, si la fonction ` est λ-exponentielle concave, on a :

T∑
t=1

E(ρ̂1,...,ρ̂t)`(f̂t, zt) ≤ inf
ρ∈M+

1 (F)

{
Eθ∼ρ

T∑
t=1

`(f, zt) +
K(ρ, π)

λ

}
.

De plus, sans aucune hypothèse sur la perte, quel que soit λ > 0 :

T∑
t=1

E(ρ̂1,...,ρ̂t)`(f̂t, zt) ≤ inf
ρ∈M+

1 (F)

{
Eθ∼ρ

T∑
t=1

`(f, zt) +
λ

2
Ef∼ρ

T∑
t=1

E(ρ̂1,...,ρ̂t)

(
`(f, zt)− `(f̂t, zt)

)2
+
K(ρ, π)

λ

}
.

Les deux bornes de regrets ci-dessus sont la version déterministe des inégalités PAC-Bayésiennes de la
forme (1.12). Le risque est remplacé par la perte cumulée et l’infimum à droite est dû au choix (1.13) de
la mesure ρ̂t à chaque tour du jeu séquentiel. Ces deux bornes aboutissent à des vitesses de convergence
différentes, comme discuté dans le paragraphe précédent. Dans le premier cas le plus favorable, la perte
utilisée satisfait de bonnes propriétés et on obtient dans ce cas des vitesses de convergence rapides. Dans le
deuxième cas, qui a lieu sans aucune hypothèse sur la fonction de perte, un terme supplémentaire apparâıt
dans l’inégalité PAC-Bayésienne et des vitesses de convergence lentes en découlent. On peut retrouver
des inégalités probabilistes du cadre i.i.d. en ajoutant une étape de moyennisation supplémentaire. Cela
permet d’utiliser la chain rule (Barron [1987]) comme dans le cadre séquentiel et la preuve du Théorème
2.

1.4 Adaptation, sélection de fenêtres

La théorie de l’apprentissage propose des algorithmes pour résoudre de nombreux problèmes. Malheu-
reusement, ces outils d’aide à la décision possèdent des paramètres à fixer qui dictent leurs performances.
Dans la section 1.1 de ce chapitre, nous avons introduit deux méthodes d’apprentissage : le minimiseur
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du risque empirique et le mélange d’experts à poids exponentiels. Ce dernier exhibe d’emblée un pa-
ramètre de température que doit fixer le statisticien. Le théoricien peut proposer grâce au Théorème 2
λ∗ =

√
8(logN)/T . Malheureusement, ce choix dépend de l’horizon T du problème séquentiel. Dans un

contexte purement en ligne, cette quantité (la fin du jeu) n’est pas connue et se pose le problème de
calibration pratique de ce paramètre. De plus, comme souvent, ce choix théorique (en supposant que T
est connu) n’est pas satisfaisant. Puisque le théorème s’intéresse au pire des cas, le choix de température
qui en découle est souvent trop pessimiste en pratique. En présence d’un échantillon i.i.d. d’observations,
le problème d’adaptation est de nature différente, puisqu’on connâıt à l’avance le nombre d’observations.
Malheureusement, dans ce cas, les paramètres à calibrer dépendent du comportement de la loi P qui
génère l’ échantillon, et d’hypothèses invérifiables en pratique (régularité de la densité des observations,
hypothèse de marge, niveau de bruit, etc). Un problème séminal en statistique mathématique est le
problème du choix de la fenêtre.

La règle de Lepski
Le choix de la fenêtre est un problème très populaire en statistique mathématique. Depuis l’introduc-

tion des estimateurs à noyaux (Rosenblatt [1956] et Parzen [1962]), on cherche à calibrer de manière
automatique une fenêtre h ∈ R (cas uni varié), ou une fenêtre ~h ∈ Rd+ (cas multivarié). En estimation
de densité, on considère :

f̂h(x) =
1

n

n∑
i=1

Kh(Xi − x),(1.14)

où Kh(·) = 1/hK(·/h) est une h-dilatation d’un noyau K(·). Pour construire une fenêtre h ∈ R à
partir des observations, Lepski [1990] introduit dans un modèle de bruit blanc une méthode basée sur
la comparaison d’estimateurs construits sur une grille de fenêtre. Cette méthode permet d’obtenir une
fenêtre adaptative, c’est-à-dire qui ne dépend pas de la régularité de la fonction à estimer, et qui possède
de bonnes propriétés théoriques. Dans Lepski [1991], une procédure générale est construite, s’appliquant
par exemple aux estimateurs à noyaux d’une densité (Lepski [1992a], Lepski [1992b]). En considérant
une famille {f̂h, h ∈ H}, où H ⊆ R est une grille unidimensionnelle de fenêtre, le point de départ est une
décomposition biais-variance de la forme :

E|f̂h − f | ≤ v(h) + b(h),(1.15)

où | · | est une semi-norme. Généralement, la fonction v(·) est une fonction décroissante de h et connue
explicitement, alors que b(·) est une fonction croissante de h qui dépend d’un paramètre inconnu (comme
l’indice de régularité de la fonction f à estimer). On peut alors considérer, puisque v(h) est connue :

ĥ = max{h ∈ H : ∀h′ ≤ h, |f̂h′ − f̂h| ≤ Cv(h′)},(1.16)

où C > 0 est une constante à calibrer. Cette règle est motivée par l’heuristique suivante (h′ ≤ h) :

|f̂h′ − f̂h| ∼ |f̂h′ − f |+ |f − f̂h| ∼ v(h′) + b(h′) + v(h) + b(h) ∼ v(h′) + b(h).

Ainsi, d’un point de vue asymptotique, la règle (1.16) sélectionne :

le plus grand h > 0 tel que ∀h′ ≤ h, b(h) ≤ (C − 1)v(h′),

c’est-à-dire une estimation de h? qui réalise le compromis biais-variance dans la décomposition (1.15).

De nombreux travaux ont utilisé cette règle pour obtenir des résultats adaptatifs en statistique
mathématique. Plus récemment, quelques auteurs se sont inspiré de Lepski pour résoudre des problèmes
d’adaptation en apprentissage statistique (Katkovnik and Spokoiny [2008], Tsybakov [2004], Koltchinskii
[2006]), Brunel [2013], Dattner, Reiß, and Trabs [2013]). C’est l’objet de la première partie du Chapitre
3. L’application de cette règle en apprentissage en ligne reste un problème ouvert. La décomposition
du regret dans le Théorème 2 suggère pourtant l’utilisation d’une version séquentielle de cette règle en
apprentissage en ligne.
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La règle de Goldenshluger et Lepski
La règle (1.16) est restreinte à un choix de fenêtre h ∈ R, c’est-à-dire à des problèmes isotropes. En

effet, dans un cadre multivarié, on peut montrer que si l’on suppose une régularité isotrope (identique
dans chaque direction) de la densité des observations, le choix optimal théorique de la fenêtre dans la
version multivariée de (1.14) est de la forme (h1, . . . , hd) = (h, . . . , h) et la règle de Lepski s’applique.
Par contre, ce n’est pas le cas lorsque la régularité de la densité dépend de la direction. Récemment,
Goldenshluger et Lepski, dans une série d’articles (Goldenshluger and Lepski [2008], Goldenshluger and
Lepski [2009] pour le bruit blanc gaussien et Goldenshluger and Lepski [2011] pour l’estimation d’une
densité) proposent une règle générale pour sélectionner une fenêtre ~h ∈ Rd+ (on écrit h ∈ Rd+ dans la

suite). Etant donné une famille d’estimateurs {f̂h(·), h ∈ H ⊂ Rd+} vérifiant (1.14), Goldenshluger and
Lepski [2011] introduisent un estimateur auxiliaire :

f̂h,h′(x) =
1

n

n∑
i=1

(Kh ∗ Kh′) (Zi − z),(1.17)

où ∗ est le produit de convolution dans Rd. La règle générale de sélection de fenêtre s’écrit :

ĥ = arg min
h∈H

{
b̂(h) + δ̂(h)

}
,(1.18)

où b̂(h) et δ̂(h) sont des estimateurs du biais et de la variance dans la décomposition (1.15) construite à
l’aide de l’estimateur auxiliaire (1.17). En effet, dans (1.18) :

b̂(h) := sup
h′∈H

{
|f̂h,h′ − f̂h′ | −maj(h, h′)

}
et δ̂(h) = sup

h′∈H
maj(h′, h).

Dans l’équation ci-dessus, un rôle majeur est joué par la fonction (h, h′) 7→ maj(h, h′) appelée majorant.
Ce terme majore uniformément et avec grande probabilité la somme |f̂h,h′ −EDn f̂h,h′ |+ |f̂h−EDn f̂h| de
sorte que :

|f̂h,h′ − f̂h′ | −maj(h, h′) ∼ |fh,h′ − fh′ |.

Ainsi, en prenant le supremum sur h′ ∈ H, b̂(·) est bien une estimation du biais en soulignant que :

sup
h′

∣∣fh,h′ − fh′∣∣ = sup
h′
|Kh′ ∗ (fh − f)| = b(h).

Dans cette dernière série d’égalités, une condition nécessaire est la linéarité de fh par rapport au noyau
Kh. Ceci est un obstacle majeur à l’utilisation de la règle de Goldenshluger et Lepski (1.18) dans un cadre
plus général de M -estimation. La majeure contribution du Chapitre 3 est de proposer une alternative à
(1.18) permettant de traiter le cas des estimateurs non linéaires. Le principe est de comparer les risques
empiriques (ou les gradients pour obtenir des vitesses de convergence rapides) à la place des estimateurs
comme habituellement. Ainsi, il suffit que le risque empirique soit une fonctionnelle linéaire du noyau
pour obtenir des résultats adaptatifs optimaux.

1.5 Description synthétique des différents chapitres

A présent, nous listons les contributions par chapitre. Notez que le Chapitre 2 est un aperçu des
travaux [L3], [L8], [L4], [L15], [L10] et [L6], le Chapitre 3 est tiré de [L6], [L7] et [L12] alors que le Chapitre
4 traite des problèmes de suites individuelles ([L9] et [L11]). Le Chapitre 5 décrit des collaborations avec
les biologistes, médecins et industriels ([L5],[L13] et [L17]).

Les résultats du Chapitre 2
Le chapitre 2 est un survol des principaux résultats obtenus dans le modèle d’apprentissage statistique

de problèmes inverses. Dans une première section, nous cherchons à obtenir des vitesses de convergence
minimax en analyse discriminante avec erreurs dans les variables. Dans un premier temps, deux bornes
inférieures sont établies, généralisant les précédents travaux de Mammen and Tsybakov [1999] et Audibert
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and Tsybakov [2007] au modèle avec erreurs dans les variables. Les vitesses qui apparaissent dans ces
bornes inférieures dépendent de la marge et de la complexité (comme précédemment dans le cas direct de
Mammen and Tsybakov [1999] et Audibert and Tsybakov [2007]) et du degré du problème inverse, comme
habituellement dans les modèles avec erreurs dans les variables. La suite de cette section s’intéresse
à la construction d’estimateurs atteignant ces bornes. Pour cela, on propose de remplacer la densité
des observations dans le risque par un estimateur à noyau de déconvolution, et de minimiser le risque
empirique ainsi construit. Par la suite, nous proposons de généraliser ces bornes d’excès de risque dans
plusieurs directions. Nous considerons un problème inverse d’apprentissage dans toute sa généralité,
où l’on veut minimiser un risque RP (·) à partir d’observations indirectes (Zi, Yi), i = 1, . . . , n de loi
(Z, Y ) ∼ P̃ , où Z ∼ Af avec A un opérateur linéaire compact et f la densité de X où (X,Y ) ∼ P .
Dans ce cadre, nous obtenons des bornes d’excès de risque avec grande probabilité dans des modèles
supervisés et non supervisés. Des contraintes anisotropes sur la densité f sont aussi étudiées dans un
cadre non supervisé avec erreur dans les variables. Dans cette section, les techniques de localisation sont
adaptées au cas indirect pour obtenir des vitesses de convergence rapides qui généralisent les résultats
de Koltchinskii [2006] ou plus récemment Levrard [2013]. Dans une troisième section, en utilisant les
résultats précédents, on construit un algorithme de type k-means pour le problème de clustering avec
erreurs dans les variables. L’algorithme proposé imite l’algorithme de Lloyd (méthode de Newton), avec
une étape de déconvolution avant le schéma itératif. Cet algorithme, appelé noisy k-means est testé sur
des mélanges de gaussiennes avec erreur dans les variables. On illustre une bonne robustesse de notre
méthode lorsque le bruit augmente, ce qui n’est pas le cas de l’algorithme des k-means.

Les résultats du Chapitre 3
Le Chapitre 3 est dédié au problème du choix de la fenêtre dans le problème de minimisation d’un

risque empirique dépendant d’un paramètre. Dans un premier temps, le modèle de clustering avec erreurs
dans les variables est étudié. Une vitesse adaptative rapide est obtenue pour une méthode de sélection
de fenêtre isotrope h ∈ R. Cette méthode, appelée ERC (Empirical Risk Comparison), est basée sur
la méthode de Lepski (1.16) et remplace la comparaison d’estimateurs par une comparaison des risques
empiriques. Les résultats obtenus sont des vitesses rapides adaptatives pour l’excès de risque. Enfin, pour
être complet, nous proposons une nouvelle règle de sélection de fenêtre dans un cadre anisotrope. Pour
cela, nous introduisons un nouveau critère qui mesure la norme du gradient du risque d’un estimateur.
Comme présenté ci-dessus, ce critère permet d’obtenir des vitesses rapides en apprentissage statistique
sans hypothèse de marge et sans technique de localisation, à condition que la fonction de perte soit
suffisamment régulière. Ainsi, nous pouvons proposer une méthode de sélection basée sur la minimisation
d’un majorant du compromis biais variance. Ce majorant est construit à l’aide d’un risque empirique
auxiliaire, en suivant les idées de Goldenshluger and Lepski [2011]. Cette fois-ci, nous remplaçons la
comparaison d’estimateurs par la comparaison des gradients. Les résultats sont obtenus dans un cadre
général de minimisation d’un risque empirique dépendant d’une fenêtre, et permettent d’obtenir pour
la première fois des vitesses adaptatives optimales pour des estimateurs non linéaires dans un cadre
anisotrope.

Les résultats du chapitre 4
Le Chapitre 4 présente des résultats récents en apprentissage en ligne. Le jeu séquentiel introduit

dans un premier temps est le suivant : à chaque tour t = 1, . . . , T , à partir des observations passées
z1, . . . , zt−1 ∈ Rd, et sans avis d’experts, on veut prédire la position de zt. Pour cela, on s’autorise
plusieurs tentatives et la perte à l’instant t est la plus petite distance entre zt et la tentative la plus
proche. Ce problème de prédiction s’apparente à un problème de clustering en ligne. On démontre ainsi
des bornes de regret sans aucun a priori sur le nombre de classes, ni aucun avis d’experts. Dans cette
partie, la théorie PAC-Bayésienne en grande dimension permet d’obtenir un algorithme automatique qui
sélectionne le nombre de groupes à chaque itération. Ces résultats sont convertis au cadre statistique
traditionnel où des bornes d’excès de risque sont établies dans le cadre de la sélection de modèles (ici le
nombre de classes) et du clustering en grande dimension. Par la suite, on étend ces résultats à un cadre
de bi-clustering où le clustering est une étape intermédiaire dans un problème de prédiction en ligne. La
dernière partie du Chapitre 4 étudie les propriétés d’optimalité des algorithmes séquentiels de clustering
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en ligne. Grâce à des outils probabilistes, on propose un comportement asymptotique du regret minimax
dans le problème de clustering en ligne. Ces résultats illustrent l’optimalité d’une version pénalisée de
l’algorithme de clustering de suites individuelles et de nombreux problèmes restent ouverts.

Les résultats du Chapitre 5
Ce chapitre expose plusieurs collaborations avec des scientifiques du vivant ou de l’industrie consistant

à utiliser des techniques d’apprentissage pour résoudre des problèmes réels. Dans un premier temps, une
synthèse des travaux en collaboration avec l’équipe GenHort (génétique et horticulture) de l’I.N.R.A.
d’Angers et Koji Kawamura (biologiste à l’Osaka Institute of Technology) sur la recherche de QTL
(Quantitative Trait Locus) est proposée. Dans ce problème, nous cherchons à déterminer des endroits du
génome qui expliquent des variations phénotypiques de croisements de rosiers, et plus précisément des
caractères d’architecture d’inflorescence. L’utilisation de méthodes à noyaux issues de l’apprentissage
statistique (SVM, kernel PCA) s’avèrent très utile à la détection de ces QTL. Dans un second temps,
j’aborde un projet de prédiction en médecine avec le C.H.U. d’Angers concernant le développement de
méthodes non-invasives pour le diagnostic de la fibrose du foie. Dans ce problème, nous disposons d’un
échantillon d’un millier de patients soumis à une analyse sanguine et à une biopsie du foie. L’objectif est
d’agréger des régressions logistiques sur ces marqueurs sanguins pour prédire le stade de la fibrose. Enfin,
la dernière partie est dédiée à un projet de prédiction dans le domaine du sport. L’entreprise Itnoveo
développe une application Andröıd pour partager l’évolution d’une rencontre sportive sur internet. En
utilisant les SVM (Support Vector Machines), nous avons ajouté un plug-in de prédiction qui permet
de pronostiquer le gagnant du match pendant la rencontre. Ces collaborations illustrent la diversité des
applications potentielles des algorithmes d’apprentissage.
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Notations

Chapter 2 and Chapter 3 could be group together to form a contribution to the statistical learning
theory. We try, as far as possible, to use the same notations along these chapters according to the
following table.

Xi, i = 1, . . . , n direct observations
Zi, i = 1, . . . , n indirect observations

K(·) kernel function
F [·] Fourier transform
λ generic smoothing parameter

h ∈ Rd+ bandwidth parameter
H bandwidth set
Kh(·) h-dilation of a kernel function

K̃h(·) deconvolution kernel
N ∈ N∗ spectral cut-off
R(·) true risk

R̂(·) empirical risk

R̂h(·) deconvoluted empirical risk
Rh(·) expectation of the deconvoluted empirical risk
1G indicator function of the set G

HB(G, ε, d) ε-entropy with bracketing of the set G
c a codebook (c1, . . . , ck) ∈ Rdk

| · |2, ‖ · ‖2 Euclidean norms

–Table 1. Notations for Chapter 2 and Chapter 3–
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Chapitre 2

Inverse Statistical Learning

In this chapter, we undertake a survey of my contribution in statistical learning with indirect observa-
tions. The problem of indirect observations has been investigated for a while in nonparametric statistics.
A patent example is density estimation in the presence of noisy observations :

Zi = Xi + εi, i = 1 . . . , n.(2.1)

In this framework, (Xi)
n
i=1 are usually i.i.d. with unknown density f over Rd with respect to the Lebesgue

measure whereas (εi)
n
i=1 are i.i.d. with known density η, and independent of the sequence (Xi)

n
i=1. The

purpose is to estimate f giving noisy observations (Zi)
n
i=1. Simple Fourier analysis tell us that a good

candidate estimator f̂ should satisfy, under standard assumptions that will be examined in the sequel :

F [f̂ ] = F [fZ ]/F [η],

where fZ is the density of Z1 and F is the usual Fourier transform. In kernel estimation - which can
be traced back to the work of Parzen (see Parzen [1962]) and Rosenblatt (see Rosenblatt [1956]) - this
equation motivates the introduction of a deconvolution kernel 1 :

K̃h(x) = F−1

[
F [Kh]

F [η]

]
(x),(2.2)

where Kh(·) = 1/hK(·/h) is the h-dilation of a given kernel K. It leads to the following deconvolution
kernel estimator :

f̂h(·) =
1

n

n∑
i=1

K̃h(Zi − ·).(2.3)

The empirical mean (2.3) is focal in statistical learning with noisy observations (2.1). Roughly speaking,
along the present dissertation, we recommend to plug (2.3) into the true risk of the problem.

On top of that, we will consider in the sequel a more general setting where noisy observations (2.1)
are replaced by indirect observations Zi, i = 1, . . . , n with density Af where A is a known linear compact
operator. In such a problem, (2.3) is replaced by another regularization scheme, such as projection or
spectral cut-off (see Section 2.2) :

f̂N (·) =
N∑
k=1

θ̂kφk(·),(2.4)

where (φk)k∈N is the orthonormal basis associated with the Singular Value Decomposition (SVD) of
operator A whereas (θ̂k)

N
k=1 are empirical coefficients.

This chapter is organized as follows. We bring up a precise minimax study of the problem of discri-
minant analysis with errors in variables in the first section. It combines four lower bounds, with related

1. We adopt this notation from Chapter 2 to Chapter 3 where we need in particular the following property : ˜Kh ∗ Kh′ =
K̃h ∗ K̃h′ , where ∗ stands for the convolution product.
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upper bounds corresponding to different regularity assumptions, and at the same time two different
criteria (see the definition of df,g(·, ·) and d∆(·, ·) below). Loosely speaking, classification can be seen
as a pure set estimation problem, whereas an alternative is to minimize an excess risk which takes into
account the inherent difficulty of the problem. The regularity assumptions advanced in the sequel are :

— boundary fragment assumptions, initiated by Korostelëv and Tsybakov [1993] (see also Mammen
and Tsybakov [1999]),

— and plug-in assumptions (see Yang [1999] or Audibert and Tsybakov [2007]).
Interestingly, these two regularity assumptions lead to quite different situations in the presence of indirect
observations. The main message of this minimax study is the following one : when we observe a noisy
sample as in (2.1), it is natural, easier, and in the end minimax to deal with plug-in type assumptions
rather than boundary assumptions.

We continue this theory by extending the previous results to the general framework of statistical
learning. In Section 2.2, we debate several risk bounds for smooth losses and common entropy conditions
on the set of decision rules. We examine the problem of multiclass as well as unsupervised classification.
We also extend the deconvolution framework to a general linear inverse problem as it was mentioned
above. These generalizations illustrate rather well the convenience to consider a variety of problems with
indirect observations. The introduction of universal complexity and margin assumptions enables us to
extend the results of the noise free case (Koltchinskii [2006], see also Bartlett, Bousquet, and Mendelson
[2005], Tsybakov [2004]).

These considerations permit to construct in Section 2.3 a novel algorithm for clustering with errors
in variables. We focus on the prevailing k-means problem, where we want to learn k clusters of a set of
observations. Following the guiding thread of the familiar Lloyd algorithm (Lloyd [1982]), we suggest a
deconvoluted version of this algorithm called noisy k-means. Based on Newton’s iteration, it is analyzed
in several gaussian mixtures, and compared with a basic k-means algorithm.

2.1 Minimax theory [L3],[L8]

2.1.1 Introduction

In the problem of discriminant analysis, we usually observe two i.i.d. samples X
(1)
1 , . . . , X

(1)
n and

X
(2)
1 , . . . , X

(2)
m . Each observation X

(j)
i ∈ Rd is assumed to admit a density with respect to a σ-finite

measure Q, dominated by the Lebesgue measure. This density will be denoted by f if the observation
belongs to the first set (i.e. when j = 1) or g in the other case. Our objective is to infer the density of
a new incoming observation X. This problem can be seen as a particular case of the more general and
extensively studied binary classification problem (see Devroye, Györfi, and Lugosi [1996] for a meticulous
introduction or Boucheron, Bousquet, and Lugosi [2005] for a concise survey). In this framework, a
decision rule or classifier can be identified with a set G ⊂ Rd, which attributes X to f if X ∈ G and to
g otherwise. Then, we can associate to each classifier G its corresponding Bayes risk R(G) defined as

R(G) =
1

2

[∫
K\G

f(x)dQ(x) +

∫
G
g(x)dQ(x)

]
,(2.5)

where we restrict the problem to a compact set K ⊂ Rd. The minimizer of the Bayes risk (the best
possible classifier for this criterion) is given by :

G?K = {x ∈ K : f(x) ≥ g(x)},(2.6)

where the infimum is taken over all subsets of K. The Bayes classifier is obviously unknown since it
explicitly depends on the couple (f, g). The goal is thus to estimate G?K thanks to a classifier Ĝ based
on the two learning samples.

In the sequel, we propose two different measures of performances of a set G ⊂ K. First of all,
simple algebra indicates that the excess risk R(G) − R(G?K) = 1/2 · df,g(G,G?K) where df,g(·, ·) is a
pseudo-distance over subsets of K ⊂ Rd defined as :

df,g(G1, G2) =

∫
G1∆G2

|f − g|dQ,
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and G1∆G2 = [Gc1 ∩ G2] ∪ [Gc2 ∩ G1] is the symmetric difference between two sets G1 and G2. In this
context, there is another natural way of measuring the accuracy of a decision ruleG through the quantity :

d∆(G,G?K) =

∫
G∆G?K

dQ,

where d∆ defines also a pseudo-distance on the subsets of K ⊂ Rd.
In the noise free case, i.e. when ε = 0 in (2.1), Mammen and Tsybakov [1999] has attracted the

attention on minimax fast rates of convergence (i.e. faster than n−1/2) and states in particular 2 :

inf
Ĝ

sup
G?K∈G(α,ρ)

[
df,g(Ĝ,G

?
K)
]
≈ n−

α+1
2+α+ρα , as n→ +∞,(2.7)

where G(α, ρ) is a nonparametric set of candidates G?K with complexity ρ > 0 and margin parameter
α ≥ 0 (see below for a precise definition). In (2.7), the complexity parameter ρ > 0 is associated to
the notion of entropy with bracketing whereas the margin parameter is used to link the variance to
the expectation. It gives Mammen and Tsybakov [1999] the opportunity to get improved bounds using
the so-called peeling technique of van de Geer [2000]. This result is at the origin of a vast literature in
classification (see for instance Massart and Nédélec [2006],Audibert and Tsybakov [2007], Blanchard,
Bousquet, and Massart [2008], Blanchard, Lugosi, and Vayatis [2003]) or in general statistical learning
(see Koltchinskii [2006], Bartlett, Bousquet, and Mendelson [2005], Bartlett and Mendelson [2006]). In
these papers, the complexity assumption can be a geometric assumption over the class of candidates G?K
(such as finite VC dimension, or boundary fragments) or hypotheses on the regularity of the regression
function of classification (plug-in type assumptions). In Massart and Nédélec [2006], minimax fast rates
are established for finite VC class of candidates whereas plug-in type assumptions have been studied
in classification in Audibert and Tsybakov [2007] (see also Devroye, Györfi, and Lugosi [1996] or Yang
[1999]). More generally, Koltchinskii [2006] proposes to consider ρ > 0 as a complexity parameter in local
Rademacher complexities and gives universal upper bounds containing (2.7) and the results of Mammen
and Tsybakov [1999] or Audibert and Tsybakov [2007].

In this section, we examine the estimation of the Bayes classifier G?K when dealing with noisy samples.
For all j ∈ {1, 2}, we assume that we observe :

(2.8) Z
(j)
i = X

(j)
i + ε

(j)
i , i = 1, . . . nj ,

instead of the X
(j)
i , where in the sequel n1 = n and n2 = m. The ε

(j)
i denotes random variables

expressing measurement errors. We are facing an inverse problem, and more precisely a deconvolution
problem. Deconvolution problems appear in many fields where data are obtained with measurements
errors and are at the core of several nonparametric statistical studies. For a generous review of the
possible methodologies associated to these problems, we may mention for instance Meister [2009]. More
specifically, we refer to Fan [1991] in density estimation or Butucea [2007] where goodness-of-fit tests
are brought up in the presence of noise. The key point of all these studies is to employ a deconvolution
kernel in order to annihilate the noise ε. It is important to mention that in this discriminant analysis
setup, or more conventionally in classification, there is - up to our knowledge - no such a work.

In the direct case, empirical risk minimizers appear as good candidates to reach fast rates of conver-
gence. Unfortunately, in the error-in-variables model, since we observe noisy samples Z = X+ε, classical
ERM principle fails since :

1

2n

n∑
i=1

1{Z(1)
i ∈K\G}

+
1

2m

m∑
i=1

1{Z(2)
i ∈G}

−→ 1

2

[∫
K\G

(f.µ) ∗ η(x)dx+

∫
G

(g.µ) ∗ η(x)dx

]
6= R(G),

where ∗ stands for the convolution product (see below for details). This motivates a deconvolution step
in the classical ERM procedure. We study the minimization of an asymptotically unbiased estimator

2. where u ≈ v means that there exist a,A > 0 such that av ≤ u ≤ Av.
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R̂h(G) of R(G) which uses kernel deconvolution estimator (2.3) with bandwidth parameter h according
to :

R̂h(G) =
1

2n

n∑
i=1

K̃h ∗ 1K\G(Z
(1)
i ) +

1

2m

m∑
i=1

K̃h ∗ 1G(Z
(2)
i ).(2.9)

In this section, we set out as accurately as possible the influence of the error ε on the presence of fast rates
of convergence. For this purpose, we apply the asymptotic theory of empirical processes in the spirit of
van de Geer [2000] (see also van der Vaart and Wellner [1996]) to the deconvolution empirical risk (2.9).
It leads to a new and interesting theory of risk bounds offered in Section 2.1.4 for discriminant analysis.
In particular, we need to study in details the complexity of the class of functions {K̃h ∗ 1G, G ∈ G}.
This complexity is related to the imposed complexity over G, such as boundary fragment assumptions,
or plug-in conditions. For each assumption, we establish lower and upper bounds and discuss the perfor-
mances of this deconvolution ERM estimator for this problem. The problem of adaptation is postponed
to Chapter 3 where adaptive fast rates of convergence are stated.

2.1.2 Plug-in (I) vs boundary fragments (II)

In this section, given a class F , one would like to quantify as exactly as possible the minimax risks :

inf
Ĝ

sup
(f,g)∈F

d�(Ĝ,G?K),

where the infimum is taken over all possible estimators of G?K and d� stands for df,g or d∆. In order to
obtain a satisfying minimax study, one needs to detail the considered classes F . Such a class expresses
some conditions that can be set on the pair (f, g). At the first glance, we detail some common assumptions
(complexity and margin) that can be set on the pair (f, g). We then introduce the two main regularity
assumptions, namely the plug-in and boundary fragments assumptions.

A first condition that can be set on the pair (f, g) is the well-known margin assumption. It has been
introduced in discriminant analysis (see Mammen and Tsybakov [1999]) as follows :

Margin Assumption : There exists positive constants t0, c2, α ≥ 0 such that for 0 < t < t0 :

Q{x ∈ K : |f(x)− g(x)| ≤ t} ≤ c2t
α.(2.10)

The margin assumption (2.10) is ’structural’ in the sense that it describes the difficulty to distinguish an
observation having density f from an other with density g. This assumption is related to the behaviour
of |f − g| at the boundary of G?K . It may give a variety of minimax fast rates of convergence which
depends on the margin parameter α. A large margin corresponds to configurations where the slope of
|f − g| is high at the boundary of G?K . The most favorable case corresponds to a margin α = +∞ when
f − g jumps at the boundary of G?K . The same kind of assumptions have been introduced originally in
the related problem of excess mass by Polonik [1995].

From a statistical point of view, this assumption provides a precise description of the interaction
between the pseudo distance df,g and d∆. In particular, it permits a control of the variance of the em-
pirical processes involved in the upper bounds. Other assumptions of this type can be formulated (see
for instance Bartlett and Mendelson [2006] or Koltchinskii [2006]) in a more general statistical learning
context. This is the focus of Section 2.2.2 (see for instance Definition 3).

For the sake of convenience, we will also require an additional hypothesis on the noise ε. We assume
in the sequel that ε = (ε1, . . . , εd)

′ admits a density η with respect to the Lebesgue measure satisfying :

(2.11) η(x) =
d∏
i=1

ηi(xi) ∀x ∈ Rd.
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In other words, the entries of the vector ε are independent. The assumption below describes the difficulty
of the problem. It is often called the ordinary smooth case in the inverse problem literature.

Noise Assumption : There exist (β1, . . . , βd)
′ ∈ Rd+ such that for all i ∈ {1, . . . , d}, βi > 1/2,

|F [ηi](t)| ∼ |t|−βi , and
∣∣F ′[ηi](t)∣∣ ∼ |t|−βi as t→ +∞,

where F [ηi] denotes the Fourier transform of ηi. Moreover, we assume that F [ηi](t) 6= 0 for all t ∈ R
and i ∈ {1, . . . , d}.

Classical results in deconvolution (see e.g. Fan [1991], Fan and Truong [1993] or Butucea [2007] among
others) are stated for d = 1. Two different settings are then distinguished concerning the difficulty of
the problem which is expressed through the shape of F [η]. One considers alternatively the case where
|F [η](t)| ∼ |t|−β as t→ +∞, which yet corresponds to mildly ill-posed inverse problem or |F [η](t)| ∼ e−γt
as t → +∞ which leads to a severely ill-posed inverse problem. This last setting corresponds to a
particularly difficult problem and is often associated to low minimax rates of convergence.

In this dissertation, we only deal with d-dimensional mildly ill-posed deconvolution problems. For the
sake of brevity, we do not examine severely ill-posed inverse problems or possible intermediates (e.g. a
combination of polynomial and exponential tails, see Comte and Lacour [2013]). Nevertheless, the rates
in these cases could be obtained through the same steps.

In order to provide a complete study, one also needs to set an assumption on the difficulty to find
G?K in a possible set of candidates, namely a complexity assumption. In the classification framework,
two different kind of complexity assumptions are often proposed in the literature. The first one concerns
the shape of G?K , literally the regularity of the boundary of the Bayes classifier. Another way to describe
the complexity of the problem is to impose condition on the regularity of the underlying densities f and
g. Such kind of condition is originally related to plug-in approaches. Remark that any clear connexion
can be established between these two assumptions : a set G?K with a smooth boundary is not necessarily
associated to smooth densities.

We are now ready to give a precise description of these assumptions. In the following, we denote by
Σ(γ, L) the class of isotropic Hölder functions according to the following definition 3.

Definition 1. Fix γ > 0 and L > 0, and let bγc be the largest integer strictly less than γ. The isotropic
Hölder class Σ(γ, L) on K ⊂ Rd is the set of functions f : K → R having on K all partial derivatives of
order bγc and such that for any x, y ∈ K :

∣∣∣∣∣ ∂|p|f(x)

∂xp11 · · · ∂x
pd
d

− ∂|p|f(y)

∂yp11 · · · ∂y
pd
d

∣∣∣∣∣ ≤ L
d∑
v=1

|xv − yv|γ−bγc, ∀ p ∈ Nd : |p| := p1 + · · ·+ pd = bγc;

bγc∑
m=0

∑
|p|=m

sup
x∈Rd

∣∣∣∣∣ ∂|p|f(x)

∂xp11 · · · ∂x
pd
d

∣∣∣∣∣ ≤ L,
where xv and yv are the vth components of x and y.

We are now on time to state the plug-in assumption as follows :

Plug-in Assumption (I). There exists γ and L positive constants such that f − g ∈ Σ(γ, L).

This hypothesis concerns the regularity of the function f−g itself. It allows to control the complexity
of the set of candidates G?K and get minimax results for the problem of discriminant analysis with errors
in variables (see Theorem 1 and Theorem 3 below).

Other conditions have been proposed in the literature in order to explain and quantify the difficulty
related to a classification problem. We can consider a family of boundary fragments on K = [0, 1]d as

3. The anisotropic case is not examined here for simplicity whereas it is the purpose of Section 2.2.3 (see Definition 5).
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follows. A set G ⊂ [0, 1]d belongs to a class of boundary fragments (see Korostelev and Tsybakov [1993])
if there exists b : [0, 1]d−1 → [0, 1] such that :

G = {x = (x1, . . . xd) : xd ≤ b(x1, . . . , xd−1)} := Gb.

For given γ, L > 0 the class of Hölder boundary fragments is then defined as

G(γ, L) = {Gb, b ∈ Σ′(γ, L)},(2.12)

where Σ′(γ, L) is here the class of d− 1 isotropic Hölder functions on K = [0, 1]d−1.

Boundary fragment assumption (II). There exist γ and L positive constants such that the set G?K
belongs to G(γ, L).

The boundary fragment assumption concerns the set G?K and in particular the smoothness of its
boundary. This assumption allows to get minimax fast rates in the direct case (see Mammen and Tsy-
bakov [1999]).

2.1.3 Lower bounds

Here we propose to state the two main lower bounds for the plug-in assumption (case I, see Theorem
1) and for the boundary fragment assumption (case II, see Theorem 2).

Lower bound I

We call Fplug(Q) the set of all pairs (f, g) satisfying both the margin (with respect to Q) and the
plug-in assumptions, since the previous assumption is often associated to plug-in rules in the statistical
learning literature. The following theorem proposes a lower bound in such a setting.

Theorem 1. Suppose the Noise assumption is satisfied for some β = (β1, . . . , βd)
>. Then, there exists

an absolutely continuous measure Q0 such that provided α ≤ 1,

lim inf
n→+∞

inf
Ĝ

sup
(f,g)∈Fplug(Q0)

(n ∧m)τd(α,β,γ)d�(Ĝ,G?K) > 0,

where the infinimum is taken over all possible estimators of the set G?K and

τd(α, β, γ) =



γα

γ(2 + α) + d+ 2
d∑
i=1

βi

for d� = d∆,

γ(α+ 1)

γ(2 + α) + d+ 2
d∑
i=1

βi

for d� = df,g.

It is appealing to perceive that we obtain exactly the same lower bounds as Audibert and Tsybakov
[2007] in the direct case, which yet corresponds to the situation where βj = 0 for all j ∈ {1, . . . , d}. In
this particular framework, the minimax rate of convergence mainly depends on γ and α. As in other
deconvolution problems, in the presence of errors in variables, the rates obtained in Theorem 1 are
deteriorated. The price to pay is an additional term of the form 2

∑d
i=1 βi. This term clearly connects

the difficulty of the problem to the tail behavior of the characteristic function of the noise distribution.
This price to pay is comparable with existing results in density estimation, regression with errors in
variables or goodness-of-fit testing. Last step is to get a corresponding upper bound to validate this
lower bound in the presence of noise in variables.

Remark that this lower bound is valid only for α ≤ 1. Since we use in the proof of Theorem 1
an algebra based on standard Fourier analytical tools, we have to consider sufficient smooth objects.
As a consequence in the lower bounds, we can check the margin assumption only for values of α ≤ 1.
Nevertheless, we conjecture that this restriction is only due to technical reasons and that our result
remains pertinent for all α, γ ∈ R (see the open problems at the end of the manuscript).
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Proof: The proof mixes standard lower bounds arguments from classification (see Audibert [2004] and
Audibert and Tsybakov [2007]), but then uses some techniques which are specific to the inverse problem
literature (see for instance Butucea [2007] or Meister [2009]). Beforehand, for all estimator Ĝn,m of the
set G?K , we have :

sup
(f,g)∈Fplug(Q0)

Ef,gd∆(Ĝn,m, G
?
K) ≥ sup

f∈F1(Q0)
Eg0

[
Ef
{
d∆(Ĝn,m, G

?
K)|Z(2)

1 , . . . , Z(2)
m

}]
,(2.13)

where in (2.13), the existence of the triplet (Q0,F1(Q0), g0) is operated thanks to the following lemma.

Lemma 1. For any γ > 0, provided that α ≤ 1, there exists a triplet (Q0,F1(Q0), g0) such that :

1. F1(Q0) = {f−→σ ,−→σ ∈ {0, 1}k} is a finite class of densities with respect to a specific measure Q0

and g0 a fixed density with respect to Q0 ;

2. (f−→σ , g0) ∈ Fplug(Q0) for all −→σ ∈ {0, 1}k ;

3. For j = 0, 1, if we denote by Pj ∼ Z = X+ε where X ∼ f−→σ j and −→σ j = (σ1, . . . , σj−1, j, σj+1, . . . , σk)
whereas ε ∼ η satisfying the Noise assumption, we have :

χ2(P1,P0) ≤ C × k−ζd(α,γ,β) where ζd(α, γ, β) = γ +
αγ + d

2
+

d∑
i=1

βi.

Now, thanks to an Assouad lemma for classification (see Audibert [2004]), we have :

sup
−→σ ∈{0,1}k

Ef−→σ
{
d∆(Ĝn,m, G

∗
K)|Z(2)

1 , . . . , Z(2)
m

}
≥

k∑
j=1

[
1−

√
(1 + χ2(P1,P0))n − 1

∫
Bj

dQ0(x)

]
≥ c′k−αγ/2,

provided that Bj ⊂ K is a painstaking subset and χ2(P1,P0) ≤ C/n to have the last inequality. Then,
the third assertion of Lemma 1 and a choice of k = n1/ζd(α,γ,β) allows to concludes the proof of the lower
bound.

Lower bound II

In the following, we denote by Ffrag(Q) the set of all pairs (f, g) satisfying both the margin and
boundary fragment assumptions. Theorem 2 states lower bounds for the minimax risks over the class
Ffrag(Q).

Theorem 2. Suppose that Q is the Lebesgue measure on K = [0, 1]d and that the Noise assumption is
satisfied. Then :

lim inf
n→+∞

inf
Ĝ

sup
(f,g)∈Ffrag(Q)

(n ∧m)τ
′
d(α,β,γ)d�(Ĝ,G?K) > 0,

where the infinimum is taken over all possible estimators of the set G?K and

τ ′d(α, β, γ) =



γα

γ(2 + α) + (d− 1)α+ 2α

d−1∑
i=1

βi + 2αβdγ

for d� = d∆,

γ(α+ 1)

γ(2 + α) + (d− 1)α+ 2α
d−1∑
i=1

βi + 2αβdγ

for d� = df,g.

Remark that we obtain exactly the same lower bounds as Mammen and Tsybakov [1999] when
βi ≡ 0. As in Theorem 1, the minimax rates of convergence mainly depend on γ and α. In the presence
of noise in the variables, the rates obtained in Theorem 2 are slower. The price to pay is an additional
term of the form 2α

∑d−1
i=1 βi + 2αβdγ. This term clearly connects the difficulty of the problem to the
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values of the coefficients β1, . . . , βd. Moreover, the above expression highlights a connection between the
margin parameter and the ill-posedness. The role of the margin parameter over the inverse problem
can be summarized as follows. Higher is the margin, higher is the price to pay for a given degree of
ill-posedness. When the margin parameter is small, the problem is difficult at the boundary of G?K and
we can only expect a non-sharp estimation of G?K . In this case, it is not significantly worst to add noise.
On the contrary, for large margin parameter, there is nice hope to give a sharp estimation of G?K and
then perturb the input variables have strong consequences in the performances. Eventually, in the above
expression, the first d − 1 components of ε have not the same impact as the last (vertical) component.
This is due to the Hölder boundary fragment assumption.

Proof: The proof of Theorem 2 folllows the same lines as the proof of Theorem 1. Nonetheless, in this
case, the boundary assumption makes the edifice of the lower bound easier. More exactly, a similar result
as Lemma 1 could be offered without any restriction on the margin parameter α ≥ 0.

2.1.4 Upper bounds

In the noise free case (ε
(j)
i = (0, . . . , 0) for all i ∈ {1, . . . , n}, j ∈ {1, 2}), we deal with two samples

having respective densities f and g. We know for instance from Mammen and Tsybakov [1999] that in
this case, ERM estimators reach the minimax rates of convergence when G = G(γ, L) corresponds to the
set of boundary fragments with γ > d−1. For larger set G(γ, L), the minimization can be restricted to a
δ−net of G(γ, L). With an additional assumption over the approximation power of this δ−net, the same
minimax rates can be achieved in a subset of G(γ, L). If we consider complexity assumptions related
to the smoothness of f − g, we can show easily with Audibert and Tsybakov [2007] that an hybrid
plug-in/ERM estimator attains the minimax rates of convergence in the noise free case. The principle of
the method is to consider an empirical minimization over a particular class :

G = {{f − g ≥ 0}, f − g ∈ Nn,m},

where Nn,m is a well-chosen δ−net. With such a procedure, minimax rates can be obtained with no
restriction over the parameter γ, α and d.

In noisy discriminant analysis, ERM estimator is no longer available. Hence, we need an additional
deconvolution step. In this context, we can put forward a deconvolution kernel, provided that the noise
has a non null Fourier transform, as expressed in the Noise Assumption. Such an assumption is rather
obvious in the inverse problem literature (see e.g. Fan [1991], Butucea [2007] or Meister [2009]).

Let K =
∏d
j=1Kj : Rd → R be a d-dimensional function defined as the product of d unidimensional

functions Kj . The properties of K leading to satisfying upper bounds will be precised later on. Then, if we

denote by h = (h1, . . . , hd) a set of (positive) bandwidths and by Kh(x) =
∏d
i=1 h

−1
i K(x1/h1, . . . , xd/hd),

we define the deconvolution kernel K̃h as :

K̃h : Rd → R

t 7→ K̃h(t) = F−1

[
F [Kh](·)
F [η]

]
(t),(2.14)

where F [·] stands for the Fourier transform. Observe that K̃h depends on the distribution of ε through
η which is supposed to be known. In this context, for all G ⊂ K, the risk R(G) can be estimated by :

R̂h(G) =
1

2

 1

n

n∑
j=1

K̃h ∗ 1K\G(Z
(1)
j ) +

1

m

m∑
j=1

K̃h ∗ 1G(Z
(2)
j )

 ,
where for a given G ⊂ K and z ∈ Rd :

K̃h ∗ 1G(z) =

∫
G
K̃h (z − x) dx.(2.15)
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The empirical risk R̂h(·), and its associated minimizer Ĝh is at the core of the upper bounds. As a rule,
following the pioneering’s works of Vapnik (see Vapnik [2000]), we have for Rh(·) := ER̂h(·) :

R(Ĝh)−R(G?K) ≤ R(Ĝh)− R̂h(Ĝh) + R̂h(G?K)−R(G?K)

≤ Rh(Ĝh)− R̂h(Ĝh) + R̂h(G?K)−Rh(G?K)

+(R−Rh)(Ĝh)− (R−Rh)(G?K)

≤ sup
G∈G
|Rh − R̂h|(G,G?K) + sup

G∈G
|Rh −R|(G,G?K),(2.16)

where we write for concision for any G,G′ ⊂ K :

|Rh − R̂h|(G,G′) = |Rh(G)−Rh(G′)− R̂h(G) + R̂h(G′)|,

and similarly :

|Rh −R|(G,G′) = |Rh(G)−Rh(G′)−R(G) +R(G′)|.

As a result, to get risk bounds, we have to deal with two opposing terms, namely a so-called variance
term :

sup
G∈G
|Rh − R̂h|(G,G?K),(2.17)

and a bias term (since ER̂h(G) 6= R(G)) of the form :

sup
G∈G
|Rh −R|(G,G?K).(2.18)

The variance term (2.17) gives rise to the study of increments of empirical processes. In Theorem 3-4
below, this control is based on entropy conditions and uniform concentration inequalities (see van de
Geer [2000] or van der Vaart and Wellner [1996]). However, in the noisy case, empirical processes are
indexed by a class of functions which depends on the smoothing parameter h. This is the major obstacle
in the control of (2.17).

The bias term (2.18) is controlled by taking advantages of the properties of G and of the assumptions
on the kernel K. This bias term is inherent to the estimation procedure and can be (sometimes) connected
to the standard bias term in nonparametric estimation. Lemma 2 below provides a simple way to control
the bias term under the plug-in assumption.

Lemma 2. Suppose f −g ∈ Σ(γ, L). Suppose that the kernel K is of order bγc. Then, we have, for some
C > 0 :

sup
G⊂K

|Rh −R|(G) ≤ C
d∑
i=1

hγi .

Proof: The proof is straightforward since we can write :

R(G)− ERh(G) =

∫
1GC [(f − g)−Kh ∗ (f − g)]dQ.

Then, the control of the bias term is reduced to the control of the bias term in standard nonparametric
density estimation, which gives in this isotropic case (see for instance Tsybakov [2004]), for some positive
constant c > 0 :

sup
x0∈Rd

|(f − g)(x0)−Kh ∗ (f − g)(x0)| ≤ c
d∑
i=1

hγi .
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A slightly finer version of this lemma is used in the proof of Theorem 3, where we improve the RHS
of Lemma 2 using the margin assumption.

The choice of h will be a trade-off between the two opposing terms (2.17) and (2.18). Small h leads
to complex functions (2.15) and blasts the variance term whereas (2.18) vanishes when h tends to zero.

We are now ready to give asymptotic fast rates of convergence to validate the lower bound of Theorem
1. For this purpose, we will require the following assumption on the kernel K which appears in (2.14).

Kernel Assumption. The Kernel K is such that F [K] is bounded and compactly supported.

The construction of smooth kernels satisfying the kernel assumption could be managed using for
instance the so-called Meyer wavelet (see Mallat [2009]).

Upper bound I

For all δ > 0, using the notion of entropy (see for instance van der Vaart and Wellner [1996]) for
Hölderian function on compact sets, we can find a δ-network Nδ on Σ(γ, L) such that :

— log(card(Nδ)) ≤ Aδ−d/γ ,
— For all h0 ∈ Σ(γ, L), we can find h ∈ Nδ such that ‖h− h0‖∞ ≤ δ.

In the following, we associate to each ν := f − g ∈ Σ(γ, L), a set Gν = {x ∈ K : ν(x) ≥ 0} and define
the ERM estimator as :

(2.19) Ĝh = arg min
ν∈Nδ

R̂h(Gν),

where δ = δn,m has to be chosen carefully. This procedure has been introduced in the direct case
by Audibert and Tsybakov [2007] and referred to an hybrid Plug-in/ERM procedure 4. The following
theorem describes the performances of Ĝh.

Theorem 3. Let Ĝh the set introduced in (2.19) with :

hj ≡ (n ∧m)
− 1

γ(2+α)+2
∑d
i=1

βi+d , ∀j ∈ {1, . . . , d}, and δ =

(∏d
i=1 h

−βi
i√

n ∧m

) 2
d/γ+2+α

.

Given some σ−finite measure Q, suppose (f, g) ∈ Fplug(Q) and the Noise assumption is satisfied with

βi > 1/2, ∀i = 1, . . . d. Consider a deconvolution kernel K̃h defined as in (2.14) where K = Πd
j=1Kj is a

kernel of order bγc, which satisfies the Kernel assumption. Then, for all real α ≥ 0 :

lim
n,m→+∞

sup
(f,g)∈Fplug(Q)

(n ∧m)τd(α,β,γ)Ef,gd�(Ĝ,G?K) < +∞,

where Q is the Lebesgue 5 mesure and :

τd(α, β, γ) =



γα

γ(2 + α) + d+ 2

d∑
i=1

βi

for d� = d∆

γ(α+ 1)

γ(2 + α) + d+ 2
d∑
i=1

βi

for d� = df,g.

4. We do not study plug-in rules in this chapter. Such algorithms are characterized by classifiers of the form :

G̃n,m =
{
x ∈ K, f̃n(x)− g̃m(x) ≥ 0

}
,

where f̃n − g̃m is an (optimal) estimator of the function f − g. The performances of such kind of methods have been
investigated by Audibert and Tsybakov [2007] in the binary classification model. We also mention for instance Goldstein
and Messer [1992] or Bickel and Ritov [2003] for contributions in a more general framework.

5. A slightly finer result is proposed in [L3] where a more general measure is proposed. We omit these considerations
here for concision.
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Theorem 3 validates the lower bounds of Theorem 1. Deconvolution ERM are minimax optimal over
the class Fplug(Q).

Here, fast rates (i.e. faster than 1/
√
n) are pointed out when αγ > d+2

∑
βi. This result is comparable

to Audibert and Tsybakov [2007], where fast rates are proposed when αγ > d. However, it is important
to stress that large values of both α and γ correspond to restrictive situations. In this case, the margin
parameter is high whereas the behavior of f − g is smooth, which seems to be contradictory (see the
related discussion in Audibert and Tsybakov [2007]).

The choice of h in Theorem 3 is the trade-off between the variance term (2.17) and the bias term
(2.18). It is interesting to remark that this choice for h does not correspond with the optimal choice in
the problem of deconvolution estimation of f − g ∈ Σ(γ, L) thanks to noisy data. Here, the bandwidth
depends on the margin parameter α and optimizes the classification excess risk bound. It highlights
that the estimation procedure (2.19) is not a plug-in rule but an hybrid ERM/Plug-in estimator as in
Audibert and Tsybakov [2007].

The minimax optimality of the procedure (2.19) is based on the choice of h in Theorem 3. This choice
depends on unknown parameters such as the regularity of the function f − g. In this direction, adaptive
fast rates are proposed in Chapter 3 in a slightly different framework 6.

Eventually, a similar approach can be considered in the direct case, using standard kernel estimators
instead of deconvolution kernel estimators. The following corollary provides a new minimax procedure
in the direct case.

Corollary 1. Let Ḡh := arg minν∈Nδ R̄h(Gν) where R̄h(·) is defined as :

R̄h(G) =
1

2

 1

n

n∑
j=1

Kh ∗ 1K\G(X
(1)
j ) +

1

m

m∑
j=1

Kh ∗ 1G(X
(2)
j )

 .
Then, if K = Πd

j=1Kj is a kernel of order bγc satisfying the kernel assumption, if we choose :

hj ≤ (n ∧m)
− 1
γ(2+α)+d , ∀j ∈ {1, . . . , d}, and δ = δn,m =

(
1√
n ∧m

) 2
d/γ+2+α

,

for any real α ≥ 0 :

lim
n,m→+∞

sup
(f,g)∈Fplug(Q)

(n ∧m)τd(α,γ)Ed�(Ḡh, G
?
K) < +∞,

where Q is the Lebesgue measure and :

τd(α, γ) =


γα

γ(2 + α) + d
for d� = d∆

γ(α+ 1)
γ(2 + α) + d

for d� = df,g.

The choice of h in Corollary 1 is not standard. If h is small enough, the ERM procedure is mini-
max since in this case, the kernel function behaves like the Dirac function. This idea has been already
mentioned in Vapnik [2000] in the general learning context and called Vicinal Risk Minimization (see
also Chapelle, Weston, Bottou, and Vapnik [2001]). However, up to our knowledge, minimax asymptotic
rates of convergence for this empirical minimization principle have not been proposed.

Upper bounds II

Here, we try to generalize the result of Mammen and Tsybakov [1999] to the noisy setting. We are
looking at upper bounds matching with the lower bounds of Theorem 2. For the sake of concision, in this

6. An adaptive version of Theorem 3 can be considered in the isotropic case using empirical risk comparisons as in
Chapter 3.
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paragraph we propose to restrict the set G to G(γ, L), where all possible regularities γ satisfy γ > d− 1.
Therefore, we are interested in the performances of the estimator :

G̃h = arg min
G∈G(γ,L)

R̂h(G),(2.20)

where the infimum is taken over the whole set G(γ, L) for γ > d− 1 (see (2.12)). We will also assume for
clarity that n = m in the following theorem.

Theorem 4. Let G̃h the set introduced in (2.20) where γ > d− 1. Suppose that the Noise assumption is
satisfied and consider a kernel K̃h(·) satisfying :

sup
t∈Rd

∣∣∣F [K̃h](t)
∣∣∣ ≤ C d∏

i=1

λ−βi−1
i , and ‖K̃h‖2 ≤ C

d∏
i=1

λ−2βi−1
i .

Suppose moreover that for any j ∈ {1, . . . , d},
∫
Rd |K(z)||zj | dz < ∞ and Πd−1

j=1Kj has compact support.
Then, if Q is the Lebesgue measure :

lim
n→+∞

sup
(f,g)∈Ffrag(Q)

nκd(α,β,γ)d�(Ĝ,G?K) <∞

where

κd(α, β, γ) =



γα

γ(α+ 2) + (d− 1)α+ 2γ(α+ 1)
d∑
i=1

βi

for d� = d∆

γ(α+ 1)

γ(α+ 2) + (d− 1)α+ 2γ(α+ 1)

d∑
i=1

βi

for d� = df,g.

Following Theorem 4, lower and upper bounds do not match. The prize to pay for the errors-in-
variables model is summarized in the term 2γ(α + 1)

∑d
i=1 βi whereas the lower bound proposes a

smaller term 2α
∑d−1

i=1 βi + 2γαβd. By the way, the corresponding error becomes negligible when γ is
close to 1 and α→∞. At the end of the manuscript, we discuss several tracks to attack this problem.

Proof: The proof uses empirical process theory gathering with the following crude bound for the bias
term :

sup
G∈G

(Rh −R)(G) ≤ C
d∑
i=1

hi.

It is based on the following scheme. For all G ⊂ K, using Fubini, we have∫
Rd

(f − g)(x) (Kh ∗ 1G(x)− 1G(x)) dx

=

∫
Rd

(f − g)(x)

(∫
z∈R2

K(z) [1G(x+ hz)− 1G(x)] dz

)
dx

=

∫
Rd
K(z)

(∫
Rd

(f − g)(x) [1G(x+ hz)− 1G(x)] dx

)
dz.

Since we do not have any conditions on the smoothness of f − g, the control of the bias reduces to the
calculation of the Lebesgue measure between the sets G and G+hz, which appears to be of order

∑
i hi.

Hence, we can not take advantage on the smoothness of the boundary.
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2.2 Other risk bounds [L4],[L6],[L16]

In this section, we survey some generalizations of the setting of Section 2.1 in two directions :
— From the statistical learning point of view, we consider in the sequel a general loss function ` and

a general set of decision rule G. We forget the presence of two samples with two different densities
and consider a couple (X,Y ) ∈ X × Y of random variables, where the label Y ∈ Y. It allows to
consider different well-known learning problems, from multiclass classification to clustering. My
weakness for classification in general makes this section dedicated to these fields. However, we can
emphasize that many other problems could be considered, such as anomaly detection, learning
principal curves, level-set estimation or ranking, just to name a few. Furthermore, we propose more
general complexity assumptions for the generic decision set G, in terms of ε-entropy. The main
message at this point is the following : a precise study of the empirical process we have at hand
allows us to give right order upper bounds under standard entropy conditions. For this purpose,
we use several localization techniques introduced in the last two decades by many authors. It
turns out that local complexity, such as modulus of continuity of empirical processes, have to be
controlled.

— We can also consider a generic linear inverse problem instead of a particular deconvolution problem
related with the Fourier domain. To be honest, we do not have meet such a problem in practice,
where errors-in-variables models are more commonly used. However, from a theoretical point of
view, it is interesting to ask the following question : can we consider a general linear operator and
other regularization schemes instead of kernel deconvolution estimators ?

The problem of inverse statistical learning

Let us consider a generator of random inputs X ∈ X , with unknown density distribution f with
respect to some σ-finite measure Q, and (a possible) associated output Y ∈ Y, from an unknown
conditional probability. The joint law of (X,Y ) is denoted by P . Given a class of functions g ∈ G, we
suppose the existence of an oracle defined as :

g? ∈ arg min
g∈G

R(g),(2.21)

where R(g) := EP `(g, (X,Y )) is the risk associated to a general loss function. For example, the set G
can be functions g : x ∈ X 7→ g(x) ∈ Y, with `(g, (x, y)) = Φ(y − g(x)) a prediction loss function.
The problem of inverse statistical learning consists in estimating the oracle g? based on a set of indirect
observations :

(Zi, Yi), i = 1 . . . , n, where Zi ∼ Af,(2.22)

with A a given linear compact operator. The density of the direct and unobserved input variable X is
denoted by f , whereas the joint law of (Z, Y ) is written P̃ . We are facing an inverse problem. In the
sequel, we consider a bounded loss function ` such that for any g ∈ G, `(g, ·) : X × Y → [0, 1] and a
compact input space X ⊂ Rd. Given a class G of measurable functions g : X → R, the performances of
a given g is measured through its non-negative excess risk, given by :

R(g)−R(g?),

where g? is defined in (2.21) as a minimizer of the risk.
The most extensively studied model with indirect observations is the additive measurement error

model (see Section 2.1). In this case, we observe indirect inputs Zi = Xi + εi, i = 1, . . . , n, where (εi)
n
i=1

are i.i.d. with known density η. It corresponds to a convolution operator Aη : f 7→ f ∗ η in (2.22).
Depending on the nature of the response Y ∈ Y, we deal with classification with errors in variables,
density deconvolution, or regression with errors in variables.

Here, given a linear compact operator A, we observe a corrupted sample (Z1, Y1), . . . , (Zn, Yn) where
Zi, i = 1, . . . , n are i.i.d. with density Af . Following Section 2.1, in this general context, given a smoothing
parameter λ, we consider a λ-Empirical Risk Minimization (λ-ERM for short in the sequel) :

arg min
g∈G

R̂λ(g),(2.23)
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where R̂λ(g) is defined in a general way as :

R̂λ(g) =

∫
X×Y

`(g, (x, y))P̂λ(dx, dy).(2.24)

The random measure P̂λ = P̂λ(Z1, Y1, . . . , Zn, Yn) is data-dependent and uses standard regularization
methods coming from the inverse problem literature (see Engl, Hank, and Neubauer [1996]). Explicit
constructions of P̂λ and empirical risk (2.24) are elaborated below. This construction depends on the
inverse problem that we have at hand, and the regularization method used. Consequently, the smoo-
thing parameter may be the bandwidth of some deconvolution kernel estimator (Section 2.1), or some
threshold of a spectral cut-off. We denote it as λ in full generality.

2.2.1 A general upper bound in multiclass classification

In this paragraph, we put forward the construction of the empirical risk (2.24) in supervised clas-
sification, i.e. when Y = {0, . . . ,M} in (2.22) for some M ≥ 1. We introduce minimal assumptions to
control the expected excess risk of the procedure. The formation of the empirical risk is based on the
following decomposition of the true risk :

R(g) =
∑
y∈Y

p(y)

∫
X
`(g, (x, y))fy(x)Q(dx),(2.25)

where fy(·) is the conditional density of X given Y = y and p(y) = P(Y = y), for any y ∈ Y. With
such a decomposition, we suggest to replace each fy(·) by a nonparametric density estimator. To state
a general upper bound, given ny = card{i = 1, . . . , n : Yi = y}, kλ : Rd × Rd → R and the set of inputs
(Zyi )

ny
i=1 = {Zi, i = 1, . . . , n : Yi = y}, we consider a family of estimators satisfying :

∀y ∈ Y, f̂y(·) =
1

ny

ny∑
i=1

kλ(Zyi , ·).(2.26)

Equation (2.26) provides a variety of nonparametric estimators of fy(·). For instance, in the minimax
study of classification with errors-in-variables, we have constructed deconvolution kernel estimators. In
this case, kλ(x, y) = K̃h(y−x) and the smoothing parameter corresponds to the d-dimensional bandwidth
of the deconvolution kernel. Another standard representation such as (2.26) is proposed in this section
with projection estimators (or spectral cut-off) using the SVD of operator A. In this case, the smoothing
parameter is the dimension of the projection method. Of course, many other regularization methods
could be considered, such as Tikhonov regularization. Moreover, it is important to mention that (2.26)
considers a constant smoothing level λ for any class y ∈ Y. This could be relaxed.

As in Section 2.1 above, we plug (2.26) in the true risk to get an empirical risk defined as :

R̂λ(g) =
∑
y∈Y

∫
X
`(g, (x, y))f̂y(x)Q(dx)p̂(y),

where p̂(y) =
ny
n is an estimator of the quantity p(y) = P(Y = y). Thanks to (2.26), this empirical risk

can be written as :

R̂λ(g) =
1

n

n∑
i=1

`λ(g, (Zi, Yi)),(2.27)

where `λ(g, (z, y)) is a modified version of `(g, (x, y)) given by :

`λ(g, (z, y)) =

∫
X
`(g, (x, y))kλ(z, x)Q(dx).

In order to state upper bounds for a minimizer of (2.27), we need the following definition 7.

7. In the sequel, we write `λ(g) : (x, y) 7→ `λ(g, (x, y)).
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Definition 2. We say that the class {`λ(g), g ∈ G} is a LB-class (Lipschitz bounded class) with respect
to µ with parameters (c(λ),K(λ)) if these two properties hold :

(Lµ) {`λ(g), g ∈ G} is Lipschitz w.r.t. µ with constant c(λ) :

∀g, g′ ∈ G, ‖`λ(g)− `λ(g′)‖
L2(P̃ )

≤ c(λ)‖`(g)− `(g′)‖L2(µ).

(B) {`λ(g), g ∈ G} is uniformly bounded with constant K(λ) :

sup
g∈G

sup
(z,y)
|`λ(g, (z, y))| ≤ K(λ).

A LB-class of loss function is Lipschitz and bounded with constants which depend on λ. Examples of
LB-classes are presented in the sequel. Coarsely speaking, the dependence on λ is driven by the behaviour
of the noise density η, as in the Noise assumption in Section 2.1. These properties are necessary to derive
explicitly an upper bound of the variance as a function of λ. Eventually, we will see that the Lipschitz
constant c(λ) in Definition 2 summarizes exactly the price to pay for the inverse problem in the excess
risk bounds.

In this way, the Lipschitz property (Lµ) is a key ingredient to control the complexity of the class of
functions {`λ(g)− `λ(g?), g ∈ G}. In the sequel, we use the following geometric complexity parameter :

ω̃n(G, δ, µ) = E sup
g,g′∈G:‖`(g)−`(g′)‖L2(µ)

≤δ

∣∣∣(R̂λ −Rλ)(g − g′)
∣∣∣ .(2.28)

This quantity corresponds to the indirect counterpart of more classical local complexities introduced in
a variety of papers (see Bartlett, Bousquet, and Mendelson [2005], Koltchinskii [2006], Massart [2000]).
Its control as a function of n, δ and λ is central to get fast rates of convergence. This can be done thanks
to the following lemma.

Lemma 3. Consider a LB-class {`λ(g), g ∈ G} with respect to µ with Lipschitz constant c(λ). Then,
given some 0 < ρ < 1, we have for some C1 > 0 :

HB({`(g), g ∈ G}, ε, L2(µ)) ≤ cε−2ρ ⇒ ω̃n(G, δ, µ) ≤ C1
c(λ)√
n
δ1−ρ,

where HB({`(g), g ∈ G}, ε, L2(µ)) denotes the ε-entropy with bracketing of the set {`(g), g ∈ G} with
respect to L2(µ) (see van der Vaart and Wellner [1996] for a definition).

With such a lemma, it is possible to control the complexity in the indirect setup thanks to standard
entropy conditions related with the class G. The proof is based on a maximal inequality due to van der
Vaart and Wellner [1996] applied to the class :

Fλ = {`λ(g)− `λ(g′) : ‖`(g)− `(g′)‖L2(µ) ≤ δ}.

Eventually, in Definition 2, (B) is also necessary to apply Bousquet’s inequality. This condition could
be relaxed by dint of recent advances on empirical processes in an unbounded framework (see Lecué and
Mendelson [2012] or Lederer and van de Geer [2012]).

Another standard assumption to get fast rates of convergence is the so-called Bernstein assumption.
It can be linked with the standard margin assumption introduced in discriminant analysis by Mammen
and Tsybakov [1999] (see also Section 2.1).

Definition 3. For κ ≥ 1, we say that F is a Bernstein class with respect to µ with parameter κ if there
exists κ0 ≥ 0 such that for every f ∈ F :

‖f‖2L2(µ) ≤ κ0[EP f ]
1
κ .
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This assumption first appears in Bartlett and Mendelson [2006] for µ = P when F = {`(g)−`(g?), g ∈
G} is the excess loss class. It allows to control the excess risk in statistical learning using functional’s
Bernstein inequality such as Talagrand’s type inequality. In classification, it corresponds to the standard
margin assumption (see Section 2), where in this case κ = α+1

α for a so-called margin parameter α ≥ 0.
Definition 3 has to be combined with the Lipschitz property of Definition 2. It allows us to have the

following serie of inequalities :

‖`λ(g)− `λ(g?)‖
L2(P̃ )

≤ c(λ)‖f‖L2(µ) ≤ c(λ) (EP f)
1
2κ ,(2.29)

where f ∈ F = {`(g)− `(g?), g ∈ G}. Last definition provides a control of the bias term as follows :

Definition 4. The class {`λ(g), g ∈ G} has approximation function a(λ) and residual constant 0 < r < 1
if the following holds :

∀g ∈ G, (R−Rλ)(g − g?) ≤ a(λ) + r(R(g)−R(g?)),

where with a slight abuse of notations, we write :

(R−Rλ)(g − g?) = R(g)−R(g?)−Rλ(g) +Rλ(g?).

This definition warrants a control of the bias term. It is straightforward that with Definition 4,
gathering with a bias variance decomposition as in (3.6), we get a control of the excess risk of ĝλ defined
in (2.30) as follows :

R(ĝλ)−R(g?) ≤ R(ĝλ)− R̂λ(ĝλ) + R̂λ(g?)−R(g?) ≤ 1

1− r

(
sup
g∈G(1)

|(R̂λ −Rλ)(g − g?)|+ a(λ)

)
,

where in the sequel :
G(δ) = {g ∈ G : R(g)−R(g?) ≤ δ}.

Explicit functions a(λ) and residual constant r < 1 are obtained in applications. There depend on the
regularity conditions over the conditional densities as well as the margin parameter κ ≥ 1 in Definition
3. It allows to get fast rates of convergence. We are now on time to state the following general upper
bound for the expected excess risk of the estimator :

ĝλ ∈ arg min
g∈G

1

n

n∑
i=1

`λ(g, (Zi, Yi)).(2.30)

Theorem 5. Suppose {`(g) − `(g?), g ∈ G} is Bernstein with respect to µ with parameter κ ≥ 1 where
g? = arg minG R(g) is unique 8. Suppose there exists 0 < ρ < 1 such that :

HB({`(g), g ∈ G}, ε, L2(µ)) ≤ C2ε
−2ρ,(2.31)

for some C2 > 0.
Consider a LB-class {`λ(g), g ∈ G} with respect to µ with parameters (c(λ),K(λ)) and approximation
function a(λ) such that :

a(λ) ≤ C1

(
c(λ)√
n

) 2κ
2κ+ρ−1

and K(λ) ≤ c(λ)
2κ

2κ+ρ−1n
κ+ρ−1
2κ+ρ−1

1 + log logq n
,(2.32)

for some C1 > 0 and q > 1.
Then estimator ĝλ defined in (2.30) satisfies, for n great enough :

ER(ĝλ)−R(g?) ≤ C
(
c(λ)√
n

) 2κ
2κ+ρ−1

,

where C = C(C1, C2, κ, κ0, ρ, q) > 0.

8. This theorem requires the unicity of the Bayes g?. Such a restriction can be avoided using a more sophisticated
geometry in Section 2.2.3.
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This upper bound generalizes the result presented in Tsybakov [2004] or Koltchinskii [2006] to the
indirect framework. Theorem 1 provides rates of convergence :(

c(λ)/
√
n
)2κ/2κ+ρ−1

.

In the noise free case, with standard ERM estimators, Tsybakov [2004] or Koltchinskii [2006] obtain
fast rates n−κ/2κ+ρ−1. In the presence of contaminated inputs, rates are slower since c(λ) → +∞ as
n→ +∞. Hence, Theorem 1 shows that the Lipschitz constant introduced in Definition 2 is seminal in
our problem. It gives the price to pay for the inverse problem in the statement of fast rates.

The behavior of the Lipschitz constant c(λ) depend on the difficulty of the inverse problem through
the degree of ill-posedness of operator A. This dissertation proposes to deal with mildly ill-posed inverse
problems. In this case, c(λ) depends polynomially on λ. Severely ill-posed inverse problems could be
considered in future works, where in this case fast rates are prohibited.

2.2.2 Applications

Now, we turn out into several applications of the general setting of Theorem 5. In the problem
of inverse statistical learning, we deal with a general compact operator A. The main consequence is
that A∗A, where A∗ denotes the adjoint of operator A, is not continuously inversible. To overcome
this difficulty, several regularization methods have been proposed over years, such as Tikhonov type
regularizations, recursive procedures in Hilbert space, or projection (or spectral cut-off) methods. These
regularization schemes are often associated with the singular values decomposition (SVD) of A. Indeed,
by compactness of A and spectral theorem (see Halmos [1963]), there exists an orthonormal basis (φk)k∈N∗

of L2(Rd) with associated eigenvalues (b2k)k∈N∗ . The singular value decomposition of A is written :

Aφk = bkϕk and A?ϕk = bkφk, k ∈ N∗,(2.33)

where ϕk(·) is the normalized version of Aφk for any k ∈ N∗.
In the problem of multiclass classification with indirect observations, we observe corrupted inputs Z

with density Af , where f in the density of the direct input X. Then, if Y = {0, . . . ,M}, with (2.33) and
by linearity of the operator, we may also write :

∀y ∈ Y, fy =
∑
k∈N∗

b−1
k 〈Afy, ϕk〉φk.

Then, the family of projection estimators f̂y(·) of each fy(·), y ∈ Y has the form :

f̂y(·) =
N∑
k=1

θ̂ykφk(·) where θ̂yk = b−1
k

1

ny

ny∑
i=1

ϕk(Z
y
i ),(2.34)

whereas N ≥ 1 is the regularization parameter. This is a particular case of representation (2.26) with :

kN (x, z) =
N∑
k=1

b−1
k ϕk(z)φk(x).

Theorem 6. Suppose {`(g) − `(g?), g ∈ G} is Bernstein class with respect to µ with parameter κ ≥ 1.
Suppose 0 < ρ < 1 exists such that (2.31) holds for some C2 > 0. Suppose there exists β ∈ R+ such
that :

bk ∼ k−βas k → +∞.

Then, for n great enough, the minimizer of (2.27) with kN (·, ·) defined above satisfies :

ER(ĝN )−R(g?) ≤ Cn−
κγ

γ(2κ+ρ−1)+(2κ−1)β ,

where C = C(γ, L,C2, ρ, κ, κ0) and N is chosen such that :

N = n
2κ−1

2γ(2κ+ρ−1)+2(2κ−1)β ,
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and for any y ∈ Y, fy is a bounded density with respect to Lebesgue contained in Θ(γ, L), the ellipsöıd
in the SVD basis defined as :

Θ(γ, L) = {f =
∑
k≥1

θkφk ∈ L2(X ) :
∑
k≥1

θ2
kk

2γ+1 ≤ L}.

Theorem 6 highlights fast rates of convergence under standard complexity and margin assumptions
over the class G. Gathering with a noise assumption related with the spectrum of the compact operator
A∗A, we lead to fast rates of convergence provided that the conditional densities are sufficiently smooth,
where the smoothness is related with the SVD of operator A. Here again, if β = 0, rates of Theorem 6
coincides with previous fast rates in the iterature. The price to pay for the ill-posedness is summarized
in this case by (2κ − 1)β/γ. This term shows a strong dependence between the degree of ill-posedness,
the margin (or Bernstein) assumption and the regularity of the conditional densities.

Many other cases have be considered by applying the general methodology of this section. We can
state similar results in multiclass classification with errors in variables, with possible anisotropic shape.
We can also consider the non-exact case as in Lecué and Mendelson [2012], where excess risk bounds are
replaced by non-exact oracle inequalities of the following form :

ER(ĝ) ≤ (1 + ε)R(g?) + Cψn.

These results are compiled in [L4], [L10] and [L16]. Other problems could be investigated such as learning
principal curves (see Biau and Fisher [2012]), quantile estimation (Hall and Lahiri [2008] or Dattner,
Reiß, and Trabs [2013]), level set estimation, or anomaly detection. The last risk bounds of this chapter
are dedicated to the problem of clustering with errors in variables. This particular case has been the
starting point of many developments that will be presented in the rest of Chapter 2-3.

2.2.3 Noisy clustering

One of the most popular issue in data mining or machine learning is to learn clusters from a big
cloud of data. This problem is known as clustering. It has received many attention in the last decades. In
this paragraph, we apply the general methodology of this section to the framework of noisy clustering.
To frame the problem of noisy clustering into the general study of this chapter, we first introduce the
following notations. Let X a Rd-random variable with unknown density f with respect to the Lebesgue
measure, such that X ≤ 1 almost-surely. For some known integer k ≥ 1, we introduce a set of codebooks
c = (c1, . . . , ck) ∈ Rdk, and the standard k-means loss function `(c, X) := minj=1,...,k |X − cj |22, where
| · |2 stands for the Euclidean norm in Rd. The corresponding clustering risk of a codebook c is given by :

(2.35) R(c) := E`(c, X) =

∫
Rd
`(c, x)f(x)dx.

Given (2.35), we measure the performance of the latter codebook c in terms of excess risk, defined as :

(2.36) R(c)−R(c?),

where c? ∈ arg minR(c) is called an oracle. The oracle set is denoted byM and we assume in the sequel
that the number |M| of oracles is finite. This assumption is satisfied in the context of Pollard’s regularity
assumptions (see Pollard [1982]), i.e. when f has a continuous density (w.r.t. the Lebesgue measure) such
that the Hessian matrix of c 7→ R(c) is positive definite (see assumption PRC below). In the direct
case, the problem of minimizing (2.36) has been investigated in a variety of areas. For a given number
of clusters k ≥ 1, the most popular technique is the k-means procedure. It consists in partitioning the
dataset X1, . . . , Xn into k clusters by minimizing the empirical risk :

R̂(c) =
1

n

n∑
i=1

min
j=1,...,k

|Xi − cj |22,

where c = (c1, . . . , ck) ∈ Rdk is a set of centers. A cluster is associated to each observation by giving
its nearest center cj , j = 1, . . . , k. The k-means clustering minimization has been widely studied in
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the literature. Since the early work of Pollard (Pollard [1981],Pollard [1982]), consistency and rates of
convergence have been considered by many authors. Biau, Devroye, and Lugosi [2008] suggest rates
of convergence of the form O(1/

√
n) whereas Bartlett, Linder, and Lugosi [1998] propose a complete

minimax study. More recently, Levrard [2013] states fast rates of the form O(1/n) under Pollard’s
regularity assumptions. It improves a previous result of Antos, Györfi, and György [2005].

In this section, we study the problem of clustering where we have at our disposal a corrupted sample
Zi = Xi + εi, i = 1, . . . , n where the εi’s are i.i.d. with density η. By applying the same paths as in
Section 2.1, we obtain a collection of noisy k-means minimizers :

ĉh := arg min
c∈C

R̂h(c), h > 0,(2.37)

where R̂h(c) is the deconvolution empirical risk for our problem. This quantity is based on the deconvo-
lution kernel density estimator f̂h(·) defined in (2.3) as follows :

(2.38) R̂h(c) =

∫
B(0,1)

`(c, x)f̂h(x)dx =
1

n

n∑
i=1

`h(c, Zi),

where `h(c, Z) is the following convolution product :

`h(c, Z) :=
[
K̃h ∗ (`(c, ·)1B(0,1)(·))

]
(Z) =

∫
B(0,1)

K̃h(Z − x)`(c, x)dx, c = (c1, . . . , ck) ∈ C,

with K̃h(·) a deconvolution kernel and C :=
{
c = (c1, . . . , ck) ∈ Rdk : cj ∈ B(0, 1), j = 1, . . . , k

}
is the

set of possible centers. Remark that the restriction to the closed unit ball B(0, 1) appears only for
technicalities, since any compact set can be used.

To investigate the generalization ability of the family (2.37), we will use a localization technique
inspired from Blanchard, Bousquet, and Massart [2008] (see also Levrard [2013]). As a first step, we
derive in Theorem 7 fast rates of convergence, for a well-chosen non-adaptive 9 bandwidth parameter
h ∈ Rd+.

In order to get satisfying upper bounds, we introduce the following regularity assumptions on the
source distribution P .

Pollard’s Regularity Condition (PRC) : The distribution P satisfies the following two conditions :

1. P has a continuous density f with respect to the Lebesgue measure on Rd,
2. The Hessian matrix of c 7−→ R(c) is positive definite for all optimal vector of clusters c?.

It is easy to see that using the compactness of B(0,M), ‖X‖∞ ≤ M and (PRC) ensure that there
exists only a finite number of optimal clusters c? ∈ M. This number is denoted by |M| in the rest of
this section. Moreover, Pollard’s condition ensures a margin assumption as in Section 2.1 thanks to the
following lemma due to Antos et al. [5].

Lemma 4 (Antos et al. [5]). Suppose ‖X‖∞ ≤M and (PRC) holds. Then, for any c ∈ B(0,M) :

‖`(c, ·)− `(c?(c), ·)‖2L2([0,1]) ≤ C1‖c− c?(c)‖22 ≤ C1C2 (R(c)−R(c?(c))) ,

where c?(c) ∈ arg minc? ‖c−c?‖2 and ‖ · ‖2 stands for the Euclidean norm in the space of codebooks Rdk.

Lemma 4 ensures a Bernstein assumption for the class F = {`(c, ·) − `(c?(c), ·), c ∈ B(0,M)} (see
Definition 3). It is useful to derive fast rates of convergence. Recently, Levrard [2013] has pointed out
sufficient conditions to have (PRC) when the source distribution P is well concentrated around its
optimal clusters. From this point of view, Pollard’s regularity conditions can be related to the margin
assumption in binary classification.

9. Chapter 3 investigates the construction of data-driven bandwidth parameters
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Moreover, as in Section 2.1, we also need a noise assumption, which gives the behaviour of the cha-
racteristic function of the noise distribution. In the sequel, we use the following weaker assumption :

Noise Assumption NA(ρ, β). There exists some vector β = (β1, . . . , βd) ∈ (0,∞)d and some positive
constant ρ such that ∀t ∈ Rd :

|F [η](t)| ≥ ρ
d∏
v=1

(
t2v + 1

2

)-βv/2

.

NA(ρ, β) deals with a lower bound on the behaviour of the characteristic function of the noise density
η. This lower bound is a sufficient condition to get excess risk bounds. However, as mentioned above,
to study the optimality in the minimax sense, we need an upper bound of the same order for the
characteristic function.

Eventually, in this paragraph, we also extend the previous results to an anisotropic behaviour of the
density f . It allows to consider more general classes of functions where the regularity depends on the
direction. This regularity will be expressed in terms of anisotropic Hölder spaces.

Definition 5. For some s = (s1, . . . , sd) ∈ R+
d , L > 0, we say that f belongs to the anisotropic Hölder

space Σ(s, L) if the following holds :
— the function f admits derivatives with respect to xj up to order bsjc, where bsjc denotes the largest

integer strictly less than sj.
— ∀j = 1, . . . , d, ∀x ∈ Rd, ∀x′j ∈ R, the following Lipschitz condition holds :∣∣∣∣∣ ∂bsjc

(∂xj)bsjc
f(x1, . . . , xj−1, x

′
j , xj+1, . . . , xd)−

∂bsjc

(∂xj)bsjc
f(x)

∣∣∣∣∣ ≤ L|x′j − xj |sj−bsjc.
If a function f belongs to the anisotropic Hölder space Σ(s, L), f has an Hölder regularity sj in each

direction j = 1, . . . , d. As a result, it can be well-approximated pointwise using a d-dimensional Taylor
formula.

For this purpose, we require the following assumption on the kernel K which appears in K̃h (see
(2.3)). This property looks like the previous assumption in the minimax theory of Section 2.1 with some
minor changes due to the anisotropic framework.

Definition 6. A kernel K is of order m = (m1, . . . ,md) ∈ Nd if and only if :
—
∫
Rd K(x)dx = 1

—
∫
Rd K(x)xkjdx = 0, ∀k ≤ mj, ∀j ∈ {1, . . . , d}.

—
∫
Rd |K(x)||xj |mjdx < K2, ∀j ∈ {1, . . . , d}.

We are now ready to state the main result of this paragraph.

Theorem 7. Assume that NA(ρ, β) is satisfied for some β ∈ (1/2,∞)d, ρ > 0 and (PRC) holds.
Suppose η∞ := ‖η‖∞ < ∞ and f ∈ Σ(s, L) with L > 0 and s ∈ Rd+. Denote by ĉh̄ a solution of (2.37)
with :

∀j = 1, . . . , d, hj = n−1/(2sj(1+
∑d
u=1 βj/sj)),

where β̄ =
∑d

v=1 βv. Then, there exists a universal constant C1 depending on w,L, d, s, β, ρ, k, η∞ and
|M|, and an integer n0 ∈ N∗ such that for any c? ∈M and any n ≥ n0 :

ER(ĉh̄, c
?) ≤ C1n

−1/(1+
∑d
j=1 βj/sj).

The proof is an application of a localization approach in the spirit of Massart [2007], applied to the
noisy set-up 10. As in Section 2.1, the bias variance decomposition (3.6) allows us to control the excess

10. The main ingredient of the proof of Theorem 7 differs from Theorem 5 above. In the particular case of a finite
dimensional space G, proof’s techniques from Theorem 5 are not optimal. Then, applied directly in noisy clustering, this
result gives an extra

√
log log(n) term in the RHS. This drawback comes from the localization scheme used in Theorem 5,

which consists in using iteratively a Talagrand’s type inequality. In the finite dimensional setting, we pay the number of
iterations (i.e. an extra

√
log log(n)) in the upper bound.
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risk. More precisely, the variance can be controlled by mixing empirical process as argued in Blanchard,
Bousquet, and Massart [2008], gathering with the noise assumption NA(ρ, β). The bias term is bounded
using both the smoothness of f and the margin assumption.

Rates of convergence of Theorem 2 are fast rates when β̄ < γ. It generalizes the result of Levrard
[2013] to the errors-in-variables case since we can see coarsely that rates to the order O(1/n) are reached
when ε = 0. Here, the price to pay for the inverse problem is the quantity

∑d
i=1 βi, related to the tail

behavior of the characteristic function of the noise distribution η in NA(ρ, β).

2.3 A new algorithm for noisy clustering [L10]

When we consider direct data X1, . . . , Xn, we are interested in the minimization of the empirical risk∑n
i=1 minj=1,...,k |Xi − cj |22. In this respect, the basic iterative procedure of k-means was proposed by

Lloyd in a seminal work (Lloyd [1982], first published in 1957 in a technical note of Bell laboratories).
The procedure calculates, from an initialization of k centers, the associated Voronöı cells and updates
the centers with the means of the data on each Voronöı cell. Bubeck [2002] has shown that it corresponds
exactly to a step of a Newton optimization. The k-means with Lloyd algorithm is considered as a staple
in the study of clustering methods. The time complexity is approximately linear, and appears as a good
algorithm for clustering spherical well-separated classes, such as a mixture of gaussian vectors.

However, in many real-life situations, direct data are not available and measurement errors may
occur. In social science, many data are collected by human pollster, with a possible contamination in the
survey process. In medical trials, where chemical or physical measurements are treated, the diagnostic
is affected by many nuisance parameters, such as the measuring accuracy of the considered machine,
gathering with a possible operator bias due to the human practitionner. Same kinds of phenomenon
occur in astronomy or econometrics (see Meister [2009]). However, to the best of our knowledge, these
considerations are not taken into account in the clustering task. The main implicit argument is that
these errors have zero mean and could be neglected at the first glance. In this section we design a novel
algorithm to perform clustering over contaminated datasets. We show that it can significantly improve
the expected performances of a standard clustering algorithm which neglect this additional source of
randomness.

2.3.1 First order conditions

When considering indirect data Zi = Xi + εi, i = 1, . . . , n, a deconvolution empirical risk is defined
as :

1

n

n∑
i=1

`h(c, Zi) =

∫
[0,M ]d

min
j=1,...,k

|x− cj |22f̂h(x)dx.(2.39)

Reasonably, a noisy clustering algorithm could be adapted, following the direct case and the construc-
tion of the standard k-means. The following theorem gives the first order conditions to minimize the
deconvolution empirical risk (2.39). In the sequel, ∇F (x) denotes the gradient of a function F : Rdk → R
at point x ∈ Rdk.

Theorem 8. Suppose assumptions of Theorem 7 are satisfied. Then, for any h > 0 :

∇
n∑
i=1

`h(c̄, Zi) = 0Rdk ,

where :

c̄u,j =

∑n
i=1

∫
Vj
xuK̃h(Zi − x)dx∑n

i=1

∫
Vj
K̃h(Zi − x)dx

, ∀u ∈ {1, . . . , d} ,∀j ∈ {1, . . . , k},(2.40)

where c̄u,j stands for the u-th coordinates of the j-th centers, whereas Vj is the Voronöı cell of c̄ with
center j :

Vj = {x ∈ Rd : min
j′=1,...,k

|x− cj′ |2 = |x− cj |2}.
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———————————————————————————————————————

1. Initialize the centers c(0) = (c
(0)
1 , . . . , c

(0)
k ) ∈ Rdk

2. Estimation step :

(a) Compute the deconvoluting Kernel Kη and its FFT F(Kη).
(b) Build a histogram of 2-d grid using linear binning rule and compute its FFT : F(f̂Z).

(c) Compute : F(f̂) = F(Kη)F(f̂Z).

(d) Compute the Inverse FFT of F(f̂) to obtain the density estimated of X : f̂ = F−1(F(f̂)).

3. Repeat until convergence :

(a) Assign data points to closest clusters in order to compute the Voronoi diagram.

(b) Re-adjust the center of clusters with equation (2.41).

4. Compute the final partition by assigning data points to the final closest clusters ĉ = (ĉ1, . . . , ĉk).

———————————————————————————————————————

Figure 2.1 : The algorithm of Noisy k-means.

The proof is based on the calculation of the directional derivatives of the deconvolution empirical
risk (2.39). It is easy to see that a similar result can be shown with the k-means. Indeed, a necessary
condition in the direct minimization problem is as follows :

cu,j =

∑n
i=1

∫
Vj
xuδXidx∑n

i=1

∫
Vj
δXidx

, ∀u ∈ {1, . . . , d} ,∀j ∈ {1, . . . , k},

where δXi is the Dirac function at point Xi. Theorem 8 proposes a same kind of condition in the errors-
in-variable case replacing the Dirac function by a deconvolution kernel. We can also perceive that by
switching the integral with the sum in equation (2.40), the first order conditions on c can be rewritten
as follows :

(2.41) c̄u,j =

∫
Vj
xuf̂h(x)dx∫
Vj
f̂h(x)dx

, ∀u ∈ {1, . . . , d}, ∀j ∈ {1, . . . , k},

where f̂h(x) = 1/n
∑n

i=1Kη (Zi − x/h) /h is the kernel deconvolution estimator of the density f . This
property is at the core of the algorithm presented in Figure 2.1.

Eventually, the expression of c̄ in Theorem 8 can lead to a kernelized version of the algorithm in
the noiseless case. Indeed, we can replace the deconvolution kernel by a standard kernel function (such
as the indicator function) with a sufficiently small bandwidth. This idea has been already presented in
Section 2.1 where optimality in the minimax sense is proved in discriminant analysis (see Corollary 1).

2.3.2 Experimental validation

Evaluation of clustering algorithms is not an easy task (see von Luxburg, Williamson, and Guyon
[2009]). In supervised classification, cross-validation techniques are standard to evaluate learning algo-
rithms such as classifiers. The principle is to divide the sample into V subsets, the first V −1 are used for
training the considered classifiers whereas the last one is used for testing these classifiers. Unfortunately,
in an unsupervised framework - such as clustering - the performances of new algorithms depend on what
one is trying to do. In this section, we propose two experimental settings to illustrate the efficiency of
noisy k-means with different criteria based on clustering or Euclidean distance.

These experimental settings are based on simulations of gaussian mixtures with additive random
noise. We want to emphasize that this additional source of randomness does not have to be neglected
for both clustering or quantization. For this purpose, we compare noisy k-means algorithm (based on a
deconvolution step) with standard k-means (a direct algorithm) using Lloyd algorithm, where the random
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initialization is common for both methods. It allows us to reduce the dependence to the initialization of
the measure of performances, due to the non-convexity of the considered problem (see Bubeck [2002]).
Eventually, we will see that this comparison depends on several parameters in our models, such as the
level of noise ε, the type of noise (Laplace or Gaussian) and the number k = 2 or k = 4 of Gaussian
mixtures.

Experimental setting

We consider two different experiments j = 1, 2 based on i.i.d. noisy samples D(j)
n = {Z(j)

1 , . . . , Z
(j)
n }

where :

Z
(j)
i = X

(j)
i + εi(u), i = 1, . . . , n, Modj(L, u),(2.42)

where (X
(j)
i )ni=1 are i.i.d. with density f (j) where :

— f (1) = 1/2fN (02,I2) + 1/2fN ((5,0)T ,I2), whereas

— f (2) = 1/4fN (02,I2) + 1/4fN ((5,0)T ,I2) + 1/4fN ((0,5)T ,I2) + 1/4fN ((5,5)T ,I2).

Moreover, (εi(u))ni=1 are i.i.d. with law L with zero mean (0, 0)T and covariance matrix Σ(u) =

(
1 0
0 u

)
for u ∈ {1, . . . , 10}. We consider two cases for L, namely a two-dimensional Laplace (L) or Gaussian (N )
noise.

For each experiment j = 1, 2, we propose to compare the performances of Noisy k-means with respect
to k-means by computing three different criteria. Given a noisy sample Zi = Xi + εi, i = 1, . . . , n, we
compute the clusterring error according to :

In(ĉ) :=
1

n

n∑
i=1

1(Yi 6= fĉ(Xi)), ∀ĉ = (ĉ1, . . . , ĉk) ∈ Rdk,(2.43)

where fĉ(x) = arg minj=1,...,k |x − ĉj |22 and Yi ∈ {1, 2} for j = 1 (resp. Yi ∈ {1, 2, 3, 4} for j = 2)
corresponds to the mixture of the point Xi. We also compute the quantization error Qn(ĉ) defined as :

Qn(ĉ) :=
1

n

n∑
i=1

min
j=1,...,k

|Xi − ĉj |22, ∀ĉ = (ĉ1, . . . , ĉk) ∈ Rdk.(2.44)

Eventually, from an estimation point of view, we can also compute the `2−estimation error of ĉ given
by :

‖ĉ− c?‖2 :=

√√√√ k∑
j=1

|ĉj − c?j |22, ∀ĉ = (ĉ1, . . . , ĉk) ∈ Rdk,(2.45)

where (c?1, c
?
2) = (0, 0, 5, 0) for Mod1(L, u) (resp. (c?1, c

?
2, c

?
3, c

?
4) = (0, 0, 5, 0, 0, 5, 5, 5) for Mod2(L, u)).

For each criterion, we study the behaviour of the Lloyd algorithm (standard k-means) with two
different noisy k-means, corresponding to two different choice of bandwidths h in the estimation step
(see Figure 2.1). For a grid h ⊆ [0.1, 5]2 of 10×10 parameters, we compute hI defined as the minimizer of
(2.43) over the grid h whereas hQ is the minimizer of (2.44). Then, we have three clustering algorithms
denoted by ĉ for standard k-means using Lloyd algorithm, and {ĉ1, ĉ2} for noisy k-means algorithms
with the same initialization and with associated bandwidth hI and hQ defined above. It is important to
stress that choice of bandwidth hI and hQ are not possible in practice. Hence, an adaptive procedure
to choose the bandwidth has to be performed, as in standard nonparametric problems. This is out of
the scope of the present chapter where we propose to compare k-means with Noisy k-means with fixed
bandwidths hQ and hI . In the sequel, we illustrate the behaviour of these methods for each criterion
and each experiment.

Results of the first experiment

In the first experiment, we run 100 realizations of training set {Z(1)
1 , . . . , Z

(1)
n } from (3.36) with n =

200. At each realization, we run Lloyd algorithm and noisy k-means with the same random initialization.
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Clustering risk Figure 2.2 (a)-(b) illustrates the evolution of the clustering risk (2.43) of {ĉ, ĉ1, ĉ2}
when u ∈ {1, . . . , 10} (horizontal axe) in Mod1(L, u).

(a) Laplace error (b) Gaussian error

Figure 2.2 : Clustering risk averaged over 100 replications from Mod1(L, u) with n = 200.

When u ≤ 4, the results are comparable and Noisy k-means seems to slightly outperform standard k-
means. However, when the level of noise in the vertical axe becomes higher (i.e. u ≥ 5), k-means with
Lloyd algorithm shows a very bad behaviour. On the contrary, noisy k-means seems robust in these
situations, for both Laplace and Gaussian noise.

Quantization risk Figure 2.3 (a)-(b) shows the behaviour of the quantization risk (2.44) of ĉ and ĉQ
when u increases.

(a) Laplace error (b) Gaussian error

Figure 2.3 : Quantization risk averaged over 100 replications from Mod1(L, u) with n = 200.

We omit ĉ1 because it shows bad performances when the variance u in Mod1(L,u) increases (see
Table 2.1). This phenomenon can be explained as follows : ĉ1 is chosen to minimize the clustering risk
(2.43). As a result, the proposed codebook ĉ1 is not necessarily a good quantizer, even if it gives good
Voronöı cells for clustering the set of data. On the contrary, ĉ2 outperform standard k-means when the
vertical variance increases. The quantization error behaves like the clustering risk above. Laplace and
Gaussian noise highlight comparable results.

L2 risk In Figure 2.4 (a)-(b), the `2 risk (2.45) of ĉ and ĉ2 is proposed. In this case, we can see a more
efficient robustness to the noise for Noisy k-means in comparison with standard k-means. However, in
comparison with the two other criteria, the `2 risk of noisy k-means increases when the variance increases.
This phenomenon is comparable for Laplace and Gaussian noise, with a slightly better robustness of noisy
k-means in the Laplace case.
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(a) Laplace error (b) Gaussian error

Figure 2.4 : `2-risk averaged over 100 replications from Mod1(L, u) with n = 200.

Conclusion of the first experiment The first experiment shows very well the lack of efficiency of
the standard k-means when we deal with errors in variables. When the variance of the noise ε increases,
the performances of the k-means are deteriorated. On the contrary, the noisy k-means shows a good
robustness to this additional source of noise for the considered criteria.

Result of the second experiment

In the second experiment, we run 100 realizations of training set {Z(2)
1 , . . . , Z

(2)
n } from (3.36) with n =

200. At each realization, we run Lloyd algorithm and Noisy k-means with the same random initialization.

Clustering risk Figure 2.5 (a)-(b) shows the evolution of the clustering risk (2.43) of {ĉ, ĉ1, ĉ2} when
u ∈ {1, . . . , 10} in Mod2(L,u) is proposed.

(a) Laplace error (b) Gaussian error

Figure 2.5 : Clustering risk averaged over 100 replications from Mod2(L, u) with n = 200.

Figure 2.5 shows a good resistance of noisy k-means ĉ1 in the presence of a mixture of four Gaussian
with errors. When the level of noise is small, ĉ1 slightly outperforms k-means ĉ and when the level of
noise becomes higher (i.e. u ≥ 5), k-means with Lloyd algorithm shows a very bad behaviour. On the
contrary, noisy k-means seems more robust in these situations. However, in the presence of a Gaussian
noise, ĉ2 is comparable with ĉ.

Quantization risk Figure 2.6 (a)-(b) shows the evolution of the quantization risk (2.43) of ĉ and ĉ2

when u ∈ {1, . . . , 10} in Mod(2,L). We omit ĉ1 for the same reason as in Mod1(L,u).
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(a) Laplace error (b) Gaussian error

Figure 2.6 : Quantization risk averaged over 100 replications from Mod2(L, u) with n = 200.

Here the evolution of the quantization risk depends strongly on the type of noise in Mod2(L, u). When
the noise is Laplace, ĉ2 outperforms standard k-means when the vertical variance u ≥ 5, whereas for
small variance, the results are comparable. On the contrary, when the additive noise is Gaussian, the
problem seems intractable and Noisy k-means with n = 200 does not provide interesting results.

L2 risk Figure 2.7 (a)-(b) proposes the `2 risk (2.45) of ĉ and ĉ2 in Mod2(L, u).

(a) Laplace error (b) Gaussian error

Figure 2.7 : `2-risk averaged over 100 replications from Mod1(L, u) with n = 200.

The results are comparable with the Quantization risk and even worst : the Noisy k-means outperforms
standard k-means for higher variance (u ≥ 8).

Conclusion of the second experiment The performances of the k-means are deteriorated when
the variance of ε increases in the second experiment. However, in this experiment, the problem of noisy
clustering -or noisy quantization - seems more difficult. Indeed, Noisy k-means algorithms are not always
significantly better than a standard k-means. In this experiment, the difficulty of the problem strongly
depends on the type of noise (Gaussian or Laplace), which coincides with standard results in errors-in-
variables models.

Conclusion of the experimental study

The results of this section show rather well the importance of the deconvolution step in the problem
of clustering with errors-in-variables. In the presence of well-separated Gaussian mixtures with additive
noise, standard k-means gives very bad performances when the variance of the noise increases. On the
contrary, Noisy k-means is more robust to this additional source of randomness. In the particular case
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of the first experiment, noisy k-means significantly outperforms standard k-means. Unfortunately, when
the mixture is more complicated (4 modes in the second experiment), the problem of noisy clustering
seems more difficult. The performances of Noisy k-means are not as good as in the first experiment.

Conclusion of Chapter 2

This chapter furnishes the first few steps toward a general theory of statistical learning with a
contaminated sample. Minimax fast rates of convergence are presented in the problem of discriminant
analysis. Other risks bounds are proposed in a general setting, with possible applications. The end of
the chapter focuses on the problem of clustering a noisy sample, where theoretical and practical issues
are considered.

These chapter tries to study as precisely as possible the influence of the inverse problem over the
statement of fast rates in classification. It appears that a key role is played by the spectrum of the
operator, such as the behaviour of the characteristic function of ε in the deconvolution case. Many issues
could be considered in the future. These questions are compiled at the end of the manuscript, where
dozen of open problems are developed.

In the next chapter, we attack the problem of bandwidth selection, i.e. the construction of data-
driven bandwidth selection methods in this context of statistical learning with a corrupted sample, or
more generally, in kernel empirical risk minimization.
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In Qn `2
Lap. Gaus. Lap. Gaus. Lap. Gaus.

ĉ 1.1 0.7 1.96 1.98 0.29 0.30
σ = 1 ĉ1 0.3 0.5 2.28 3.39 0.62 1.02

ĉ2 0.6 0.7 1.97 1.99 0.30 0.33

ĉ 0.7 0.7 2.01 1.99 0.35 0.36
σ = 2 ĉ1 0.4 0.4 2.42 2.86 0.77 0.94

ĉ2 0.7 0.7 2.01 2 0.36 0.38

ĉ 0.9 1.2 2.06 2.01 0.40 0.35
σ = 3 ĉ1 0.5 0.5 2.35 2.83 0.71 0.90

ĉ2 0.8 0.7 2.02 2.05 0.38 0.43

ĉ 0.7 1.6 2.04 2.13 0.44 0.50
σ = 4 ĉ1 0.5 0.5 2.35 3.65 0.79 1.28

ĉ2 0.7 0.7 2.04 2.09 0.43 0.56

ĉ 1.7 3.6 2.26 2.64 0.76 0.81
σ = 5 ĉ1 0.5 0.5 2.72 3.90 1.05 1.45

ĉ2 0.8 0.8 2.15 2.30 0.55 0.74

ĉ 3.1 3.1 2.57 2.82 0.82 0.94
σ = 6 ĉ1 0.5 0.5 2.70 3.87 1.08 1.62

ĉ2 0.7 0.8 2.12 2.33 0.55 0.78

ĉ 4.5 7.7 3.35 4.20 1.49 1.72
σ = 7 ĉ1 0.6 0.5 2.96 3.93 1.30 1.61

ĉ2 0.9 0.9 2.21 2.50 0.68 0.94

ĉ 10.0 11.4 4.33 5.34 2.16 2.46
σ = 8 ĉ1 0.6 0.5 3.29 4.51 1.46 1.82

ĉ2 0.9 1 2.32 2.65 0.73 1.07

ĉ 15.2 21.8 5.9 7.62 3.02 3.41
σ = 9 ĉ1 1.0 0.6 3.69 5.29 1.67 2.14

ĉ2 1.6 1.1 2.48 2.89 0.97 1.27

ĉ 16.9 23.9 6.22 8.11 3.47 3.66
σ = 10 ĉ1 1.1 0.6 3.85 5.27 1.84 2.21

ĉ2 1.8 1.1 2.68 3.09 1.27 1.37

Table 2.1 : Results of the first experiments averaged over 100 replications. Quantities In, Qn, `2
are defined in equations (2.43)-(2.45) whereas estimators ĉ (k-means with Lloyd), ĉ1 and ĉ2 (noisy k-
means with two particular bandwidths) are defined in Section 2.3.2. The values of σ corresponds to the
variance of the vertical direction of the additive noise ε, which is distributed as a Laplace or a Gaussian
distribution).
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In Qn `2
Lap. Gaus. Lap. Gaus. Lap. Gaus.

ĉ 4.3 3.3 2.16 2.13 0.83 0.86
σ = 1 ĉ1 3.4 2.9 2.57 4.24 1.55 2.14

ĉ2 4.0 4.2 2.37 2.39 1.28 1.29

ĉ 5.2 3.9 2.32 2.31 1.21 1.21
σ = 2 ĉ1 3.7 4.0 2.88 7.00 1.87 3.40

ĉ2 4.7 5.1 2.56 2.66 1.67 1.70

ĉ 5.6 6.8 2.48 2.64 1.48 1.65
σ = 3 ĉ1 4.2 5.1 3.03 10.15 2.12 4.58

ĉ2 5.6 7.9 2.66 3.10 1.79 2.21

ĉ 7.3 6.7 2.67 2.66 1.85 1.72
σ = 4 ĉ1 4.7 4.9 3.59 8.79 2.56 4.29

ĉ2 6.5 6.9 2.87 3.11 2.21 2.23

ĉ 10.5 8.8 3.22 3.14 2.85 2.30
σ = 5 ĉ1 6.2 6.3 4.03 11.17 3.11 5.28

ĉ2 8.3 10.6 3.16 3.61 2.82 2.80

ĉ 12.8 13.5 3.54 3.80 3.07 3.07
σ = 6 ĉ1 7.4 7.2 4.34 12.88 3.43 5.97

ĉ2 9.7 11.9 3.48 3.91 3.37 3.17

ĉ 14.3 13.6 3.95 4.03 3.62 3.28
σ = 7 ĉ1 7.7 6.8 4.72 12.84 3.83 6.02

ĉ2 10.5 11.5 3.62 4.14 3.69 3.30

ĉ 17.6 16.2 4.26 4.55 4.45 3.77
σ = 8 ĉ1 8.6 7.5 4.75 14.57 4.28 6.76

ĉ2 11.2 14.5 3.75 4.55 4.12 3.76

ĉ 19.1 18.8 4.82 4.80 4.95 4.10
σ = 9 ĉ1 7.4 6.6 5.12 14.13 3.98 6.61

ĉ2 10.2 13.5 3.81 4.69 4.11 3.91

ĉ 19.5 21.7 4.98 5.30 5.39 4.60
σ = 10 ĉ1 7.5 7.3 5.19 14.56 4.23 6.88

ĉ2 9.8 16.8 3.76 5.19 4.33 4.40

Table 2.2 : Results of the second experiment averaged over 100 replications. Quantities In, Qn, `2 are
defined in equations (2.43)-(2.45) whereas estimators ĉ (k-means with Lloyd), ĉ1 and ĉ2 (noisy k-means
with different bandwidths) are defined in Section 2.3.2. The values of σ corresponds to the variance of the
vertical direction of the additive noise ε, which is distributed as a Laplace or a Gaussian distribution).
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Chapitre 3

Bandwidth selection in kernel empirical
risk minimization

The problem of bandwidth selection is fundamental in nonparametric statistics. In kernel density
estimation, the starting point is a bias-variance decomposition according to :

E|f̂h(x0)− f(x0)|2 ≤ |fh(x0)− f(x0)|2 + E|f̂h(x0)− fh(x0)|2 =: bias(h) + var(h),(3.1)

where f̂h(·) =
∑n

i=1Kh(Xi − ·)/n is a kernel estimator of f based on a i.i.d. sample (Xi)
n
i=1 with mean

fh(·) = Ef̂h(·). To state minimax rates of convergence, a deterministic choice of h trades off the bias
term and the variance term in (3.1), and depends on unknown parameters, such as the smoothness index
of the density f . Given a family {f̂h, h ∈ H}, the problem of bandwidth selection is the data-driven
selection of an estimator from this family which satisfies some adaptive optimal properties : the selected
estimator reaches the minimax rate for any function in a vast range of regularities. In this case, the
proposed bandwidth does not depend on the exact smoothness index of the target function but only on
an upper bound.

In Chapter 2, non-adaptive fast rates of convergence have been derived for several ERM strategies
based on a deconvolution kernel K̃h(·). This kernel depends on some bandwidth parameter h ∈ Rd+ whose
optimal calibration is critical. In particular, an appropriate choice of the bandwidth provides in Section
3.3 fast rates in noisy clustering thanks to the following bias-variance decomposition :

R(ĉh, c
?) ≤ (R− R̂h)(ĉh, c

?) ≤ (R−Rh)(ĉh, c
?) + (Rh − R̂h)(ĉh, c

?),(3.2)

where exhaustive notations are presented in Section 3.1. We can perceive that - by and large - decom-
position (3.1) and (3.2) have the same flavour.

One of the most popular method for choosing the bandwidth is suggested by Lepski, Mammen, and
Spokoiny [1997] in a gaussian white noise model. It is based on the Lepski’s principle (Lepski [1990]).
The idea is to test several estimators (by comparison) for different values of the bandwidth. This work
is at the origin of various theoretical papers dealing with adaptive minimax bounds in nonparametric
estimation (see for instance Goldenshluger and Nemirovski [1997], Mathé [2006], Chichignoud [2012]).
From the practical point of view, Lepski’s method has also received further development, such as the
intersection of confidence intervals (ICI) rule (see Katkovnik [1999]). This algorithm reveals computatio-
nal advantages in comparison to the traditional Lepski’s procedure, or even traditional cross-validation
techniques since it does not require to compute all the estimators of the family. It was originally designed
for a problem of gaussian filtering, which is at the core of many applications in image processing (see
Kervrann and Boulanger [2006], Astola, Egiazarian, Foi, and Katkovnik [2010] and references therein). In
a deconvolution setting as well, Comte and Lacour [2013] obtain adaptive optimal results (for pointwise
and global risks) using an improvement of the standard Lepski’s principle (see also Goldenshluger and
Lepski [2011]).

In this chapter, we investigate the problem of bandwidth selection in empirical risk minimizations.
Section 3.1 could be considered as a first step into the study of data-driven selection rule for the problem
of inverse statistical learning. By considering empirical risks instead of estimators, Lepski’s heuristic
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allows to select an isotropic bandwidth in noisy clustering thanks to ERC (Empirical Risk Comparison)
method. In Section 3.2, we want to deal with a more challenging problem : the general bandwidth selection
in kernel empirical risk minimization with anisotropic regularity assumptions. These could be done by
extending the Goldenshluger-Lepski procedure in the same way as we extend the Lepski’s method. The
proposed method is called EGC (Empirical Gradient Comparison). However, as we will see, due to
the presence of fast rates and a localization technique, this problem needs the introduction of a new
criterion : the gradient excess risk. It allows to obtain adaptive minimax rates of convergence in a variety
of nonparametric models where a bandwidth needs to be selected in an empirical risk minimization
problem. Eventually, in Section 3.3, we compute the two proposed methods ERC and EGC in noisy
clustering. It illustrates rather well the theoretical results of Section 3.1-3.2 below.

3.1 Isotropic case : the ERC method [L6]

This section is devoted to the problem of adaptive noisy clustering. We design a new selection rule
based on the Lepski’s principle with a comparison of empirical risks with different nuisance parame-
ters. This method, called Empirical Risk Comparison (ERC), allows us to derive adaptive fast rates of
convergence.

To the best of our knowledge, standard adaptive procedures such as cross-validation, model selection
or aggregation cannot be directly applied in this particular context. In supervised learning (such as
regression or binary classification), it is standard to choose a bandwidth - or a tuning - parameter
using a decomposition of the set of observations. A training set is used to construct a family of candidate
estimators, each one associated with a different value of the bandwidth. Then, a test set allows to estimate
the generalization performances of each candidate. It gives rise to the family of cross-validation methods,
or aggregation procedures. Unfortunately, in unsupervised tasks, this simple estimation is not possible.
The lack of efficiency of cross-validation methods in clustering has been illustrated in Hastie, Tibshirani,
and Friedman [2002] for the problem of choosing k in the k-means. In the presence of errors in variables,
such as in deconvolution, it is quite obvious to perform cross-validation to choose the bandwidth of
a deconvolution estimator. As described in Meister [2009], it is possible to estimate the squared risk
|f̂h − f |2 with Plancherel theorem, leading to the estimation of the Fourier transform of the unknown
density. However, in our framework, this method seems hopeless since the optimal value of h does not
minimize a squared risk but an excess risk. Eventually, model selection was introduced for selecting the
hypothesis space over a sequence of nested models (e.g. finite dimension models) with a fixed empirical
risk. Penalization methods are also suitable to choose smoothing parameters of well-known statistical
methods such as splines, SVM or Tikhonov regularization methods. The idea is to replace the choice of
the smoothing parameter by the choice of the radius into a suitable ellipsoid. Unfortunately, here, the
nuisance parameter h affects directly the empirical risk and a model selection method can not be applied
in this context.

We first recall the problem of clustering noisy data introduced in Section 2.2.3. Suppose we observe
a corrupted sample Zi, i = 1, . . . , n of i.i.d. observations satisfying :

Zi = Xi + εi, i = 1, . . . , n.(3.3)

We denote by f the unknown density (with respect to the Lebesgue measure on Rd) of the i.i.d. sequence
X1, X2, ..., Xn and η the known density of the i.i.d. random variables ε1, ε2, ..., εn, independent of the
sequence (Xi)

n
i=1. We also assume that X1 ∈ B(0, 1) almost surely, where B(0, 1) is the unit Euclidean

ball of Rd (extension to B(0,M) with M > 1 is straightforward). Given some integer k ≥ 1, the
problem of noisy clustering consists in learning k clusters from f when a contaminated empirical version
Z1, . . . , Zn is observed. This problem is a particular case of inverse statistical learning which has deserved
particular attention in Chapter 2, where non-adaptive results are proposed for a collection of noisy k-
means minimizers :

ĉh := arg min
c∈C

R̂h(c), h > 0,(3.4)
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where C :=
{
c = (c1, . . . , ck) ∈ Rdk : cj ∈ B(0, 1), j = 1, . . . , k

}
is the set of possible codebooks and

R̂h(c) is defined according to :

(3.5) R̂h(c) =

∫
B(0,1)

`(c, x)f̂h(x)dx =
1

n

n∑
i=1

`h(c, Zi),

where f̂h(·) is the deconvolution kernel estimator introduced in Chapter 2. In (3.5), `h(c, Z) is the
following convolution product :

`h(c, Z) :=
[
K̃h ∗ (`(c, ·)1B(0,1)(·))

]
(Z) =

∫
B(0,1)

K̃h(Z − x)`(c, x)dx, c = (c1, . . . , ck) ∈ C,

where `(c, x) is the standard k-means loss function.
The parameter h in (3.4)-(3.5) is of great interest in this chapter. In particular, an appropriate choice

of the bandwidth provides in Chapter 2 fast rates thanks to the following bias-variance decomposition :

R(ĉh, c
?) ≤ (R− R̂h)(ĉh, c

?) ≤ (R−Rh)(ĉh, c
?) + (Rh − R̂h)(ĉh, c

?)

=: bias(h) + var(h),(3.6)

where in the sequel, for any fixed c, c′ ∈ C, Rh(c, c′) := E
[
R̂h(c) − R̂h(c′)

]
, E is the expectation w.r.t.

the law of (Z1, . . . , Zn) and c? ∈M, where M is the (finite) set of minimizers of R(c). The first part of
the decomposition is called a bias term, which depends on the unknown smoothness γ > 0 of the density
f and on the deconvolution kernel. The second term of this decomposition is called the variance term,
which is the stochastic error of the empirical risk minimization. It depends on a complexity parameter
and on the noise assumption. It was controlled in Theorem 7 using empirical process theory in the spirit
of Blanchard, Bousquet, and Massart [2008]. As a first step, we derive in Section 3.1.1 optimal fast rates
of convergence with the bandwidth h̄ := h̄(γ) which minimizes the latter bias-variance trade-off (see
Corollary 2).

3.1.1 Non-adaptive risk bound

In this paragraph, we write a non-adaptive excess risk bound for the noisy k-means procedure (3.4) in
the isotropic framework. It is a particular case of Theorem 7 when the density f has a similar behaviour
in each direction.

Corollary 2. Assume that NA(ρ, β) and PRC of Chapter 2 are satisfied for some β ∈ (1/2,∞)d and
ρ > 0. Suppose η∞ := ‖η‖∞ < ∞ and f ∈ Σ(γ, L) with γ, L > 0. Then, if we consider ĉh̄ defined in
(3.4) with :

h = n−1/(2γ+2β̄),

there exists a universal constant C1 depending on w,L, d, γ, β, ρ, k, η∞ and |M|, and an integer n0 ∈ N?
such that for any c? ∈M and any n ≥ n0 :

ER(ĉh̄, c
?) ≤ C1n

−γ/(γ+β̄),

where β̄ =
∑d

v=1 βv.

The proof is similar to the proof of Theorem 7 in Chapter 2 applied to the isotropic case.

3.1.2 Bandwidth selection with ERC

We turn out into the data-driven choice of the bandwidth h > 0 in the collection of estimators
{ĉh, h > 0} defined in (3.4). The goal is to reach adaptive excess risk bound similar to Corollary 2 for a
choice of h which does not depend on the smoothness of f .

Corollary 2 above motivates the use of a comparison method based on Lepski’s principle (Lepski
[1990]). Indeed, the non-adaptive choice of h̄ = n-1/(2γ+2β̄) trades off a bias-variance decomposition of
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the excess risk (see (3.6)) and allows to get fast rates of convergence. As a result, Lepski’s principle
appears as the most suitable tool to construct an adaptive estimator ĉĥ, where ĥ mimics the oracle h̄
of Corollary 2. The construction of the data-driven bandwidth is based on the comparison of empirical
risks instead of estimators. This direction has been already investigated in Polzehl and Spokoiny [2006],
in a particular case of Kullback-Leibler divergence. In the sequel, we adopt the same point of view in
noisy clustering by comparing empirical risks (3.5) with different bandwidths. The built estimator ĉĥ
will be called adaptive since it does not depend on the smoothness γ.

To define the selection rule, we first remind some definitions and notations. Given a kernel K satisfying
the previous Kernel assumption (see Chapter 2), we note ‖K‖1 the L1-norm of the kernel on Rd. The
constant η∞ := ‖η‖∞ is the sup-norm of the noise density η, whereas ρ > 0 and β̄ =

∑d
v=1 βv are

parameters involved in the noise assumption NA(ρ, β). Moreover, C2 > 0 is the constant introduced
in Lemma 4 of Chapter 2. It could be related to a familiar margin assumption. In the sequel, V(d) =
πd/2/Γ(d/2 + 1), where Γ(·) stands for the Gamma function.
Define the threshold term :

δh :=
210
√

2V(d)‖K‖21C2η∞
ρ2

h-2β̄ log(n)

n
,(3.7)

where h belongs to the bandwidth set H := [hmin, hmax] with

hmin :=
log1/β̄(n)

n1/2β̄
and hmax :=

(
1/ log(n)

)1/(2γ++2β̄)
,

where γ+ > 0 is an upper bound on the regularity index of f . In this section, we take n sufficiently large
such that n−1/(2γ+2β̄) ∈ H. Moreover, for some constant a ∈ (0, 1), we set :

ha := {h ∈ H : ∃m ∈ N , h = hmaxa
m} ,

a discrete exponential net on the bandwidth set with cardinality |ha|.
We are ready to introduce the adaptive bandwidth choice, called Empirical Risk Comparison (ERC) :

ĥ = max
{
h ∈ ha : R̂h′(ĉh)− R̂h′(ĉh′) ≤ 3δh′ , ∀h′ ≤ h

}
.(3.8)

The noisy k-means estimator (2.37) with bandwidth ĥ chosen from ERC rule (3.8) has the following
property.

Theorem 9. Assume that NA(ρ, β) and PRC are satisfied for some β ∈ (1/2,∞)d, ρ > 0. Suppose
η∞ := no ηno∞ < ∞ and f ∈ Σ(γ, L), where γ ∈ [0, γ+) and L > 0. Then, there exists a universal
constant depending on C2, w, L, d, γ, β, ρ, k, η∞, |M|, and n1 ∈ N such that for any c? ∈ M and any
n ≥ n1, estimator ĉĥ with ĥ selected by ERC rule (3.8) satisfies :

ER(ĉĥ, c
?) ≤ C3

(
log(n)

n

)γ/(γ+β̄)

,

where β̄ =
∑d

v=1 βv and C3 > 0.

Theorem 9 is an adaptive upper bound for the estimator ĉĥ, where ĥ is chosen from the ERC selection
rule (3.8). The estimator ĉĥ is then adaptive w.r.t. the smoothness γ. This adaptive excess risk bound
coincides with the non-adaptive previous result of Corollary 2, up to an extra log term. This is the price
to pay for the data-driven property of the procedure. A natural question is the optimality of Theorem 9
in the minimax sense.

In this respect, let us remind that it is standard from Lepski [1990] (see also Brown and Low [1996])
to pay a log(n) factor in pointwise estimation (i.e. when we estimate a target function f at a given point
x0). However, it is well-known that there is no price to pay for adaptivity in global estimation (e.g. in Lp-
norm). In the problem of noisy clustering, or more generally noisy classification, the choice of h concerns
the global estimation of the density f . This estimation is used in the procedure of noisy k-means, where
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we plug f̂h into the true risk. We could conjecture that a global estimation of f is sufficient and thus no
extra log term has to be paid. This is one of the challenge of the next section.

The threshold term δh - which comes from the control of the stochastic part of the excess risk - has
the following form (see (3.7)) :

δh = Cadapt
h-2β̄ log(n)

n
,

where the (large) constant Cadapt > 0 depends on the model. Indeed, by definition, it depends on the
underlying density f . In practice, we recommend a painstaking calibration of this constant. From the
theoretical point of view, this constant could be chosen from the propagation method suggested by
Spokoiny and Vial [2009].

The construction of an algorithm to compute the ERC rule is also of first interest. This is the core of
Section 3.3, where an ICI rule is adapted for ERC. As in standard kernel estimation, the implementation
of the ICI algorithm will be efficient to avoid the calculation of all the estimators in the collection of
noisy k-means.

In this isotropic setting, we could propose extensions of the ERC selection rule (3.8) to a more
general context of kernel empirical risk minimization. However, we prefer to defer these considerations
to Section 3.2, where we move to the anisotropic case in a more general context of kernel empirical risk
minimization.

3.2 Anisotropic case : the gradient [L7]

As seen before, Lepski-type procedures are rather appropriate to construct data-driven bandwidths
involved in kernels. Nevertheless, it is well-known that these procedures suffer from the restriction to
isotropic bandwidths with multidimensional data, which is the consideration of nested neighborhoods
(hyper-cube). Many improvements have been made by Kerkyacharian et al. [96] and more recently by
Goldenshluger and Lepski [73] to select anisotropic bandwidths (hyper-rectangle). However, theses ap-
proaches still do not provide anisotropic bandwidth selection for non-linear estimators as in our purpose.
The only work we can mention is Chichignoud and Lederer [48] in a restrictive case which is pointwise
estimation in nonparametric regression. Therefore, the study of data-driven selection of anisotropic band-
widths deserves some clarifications. Moreover, this field is of first interest in practice, especially in image
denoising (see e.g. Arias-Castro, Salmon, and Willett [2012], Astola, Egiazarian, Foi, and Katkovnik
[2010]).

This section tries to fill this gap in the context of kernel empirical risk minimization. We consider
the minimization problem of an unknown risk function R : Rm → R, where m ≥ 1 is the dimension of
the statistical model we have at hand 1. Assume there exists a risk minimizer :

(3.9) θ? ∈ arg min
θ∈Rm

R(θ).

The risk function corresponds to the expectation of an appropriate loss function w.r.t. an unknown
distribution. In empirical risk minimization, this quantity is usually estimated by its empirical version
from an i.i.d. sample. However, in many problems such as local M -estimation or errors-in-variables
models, a nuisance parameter can be involved in the empirical version. This parameter most often
coincides with some bandwidth related to a kernel which gives rise to the problem of kernel empirical risk
minimization. One typically deals with this issue in pointwise estimation as e.g. in Polzehl and Spokoiny
[142] with localized likelihoods or in Chichignoud and Lederer [48] in the setting of robust estimation with
local M -estimators. In this manuscript, we have investigated supervised and unsupervised learning with
errors in variables. As a rule, such issues (viewed as an inverse problem) require to plug-in deconvolution

1. In (3.9), we consider the risk minimization over a finite dimensional space Rm. In statistical learning or nonparametric
estimation, one usually aims at estimating a functional object belonging to some Hilbert space. However, in many examples,
the target function can be approximated by a finite object thanks to a suitable decomposition in a basis of the Hilbert
space for instance. This is typically the case in local M -estimation, where the target function is assumed to be locally
polynomial (and even constant in many cases). Moreover, in statistical learning, one is often interested in the estimation of
a finite number of parameters as in clustering. The extension to the infinite dimensional case is discussed at the end of the
manuscript.
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kernels in the empirical risk (see Chapter 2 for various examples). The choice of the bandwidth is therefore
one of the biggest challenges. In this respect, data-driven bandwidth selection in the isotropic case has
been considered in Section 3.1.

In this section, we provide a novel universal data-driven selection of anisotropic bandwidths sui-
table for our large context of models. This method can be viewed as a generalization of the so-called
Goldenshluger-Lepski method (GL method, see Goldenshluger and Lepski [2011]) and of the Empirical
Risk Comparison method of the previous section. We especially derive an oracle inequality for the “Gra-
dient excess risk” (described below), which leads to adaptive optimal results in many settings such as
pointwise and global estimation in nonparametric regression and clustering with errors-in-variables.

3.2.1 The gradient excess risk approach

Along the present section, we deal with smooth loss functions, where the smoothness is related to
the differentiability of the associated risk function. Under this restriction, we propose a new criterion to
measure the performance of an estimator θ̂, namely the Gradient excess risk (G-excess risk for short in
the sequel). This quantity is defined as :

(3.10) |G(θ̂, θ?)|2 := |G(θ̂)−G(θ?)|2 where G := ∇R,

where | · |2 denotes the Euclidean norm in Rm and ∇R : Rm → Rm denotes the gradient of the risk R.
With a slight abuse of notation, G denotes the gradient, whereas G(·, θ?) denotes the G-excess risk. The
use of a smooth loss function, together with (3.9), leads to G(θ?) = (0, . . . , 0)> ∈ Rm and the G-excess
risk |G(θ, θ?)|2 corresponds to |G(θ)|2. The most important fact with (3.10) is the following one : with
smooth loss functions, slow rates O(n−1/2) for the G-excess risk |G(θ̂, θ?)|2 lead to fast rates O(n−1) for
the usual excess risk R(θ̂)−R(θ?) thanks to the following lemma.

Lemma 5. Let θ? satisfy (3.9) and U be the Euclidean ball of Rm centered at θ?, with radius δ > 0.
Assume θ 7→ R(θ) is C2(U), all of second partial derivatives of R are bounded on U by a constant κ1 and
the Hessian matrix HR(·) is positive definite at θ?. Then, for δ > 0 small enough, we have :√

R(θ)−R(θ?) ≤ 2

√
mκ1

λmin
|G(θ, θ?)|2, ∀θ ∈ U,

where λmin is the smallest eigenvalue of HR(θ?).

The proof is based on the inverse function theorem and a simple Taylor expansion of the function R(·).
The constant two appearing in the RHS can be arbitrarily close to one, depending on the size of the
neighborhood.

Let us explain how the previous lemma, together with standard probabilistic tools, allows us to
establish fast rates for the excess risk. Recall R̂ denotes the usual empirical risk with associated gradient
Ĝ := ∇R̂ and associated empirical risk minimizer (ERM) θ̂ for ease of exposition. Under a smoothness
hypothesis over the loss function, G(θ?) = Ĝ(θ̂) = (0, . . . , 0)> and we lead to the following heuristic 2 :

(3.11)

√
R(θ̂)−R(θ?) . |G(θ̂, θ?)|2 = |G(θ̂)− Ĝ(θ̂)|2 ≤ sup

θ∈Rm
|G(θ)− Ĝ(θ)|2 . n−1/2.

The last inequality comes from the application of a concentration inequality to the empirical process
Ĝ(·), which requires no localization technique. Somehow, Lemma 5 guarantees that for a smooth loss
function, fast rates occur when the Hessian matrix of the risk is positive definite at θ?.

Now, let us compare our approach to the literature on excess risk bounds. Vapnik and Chervonenkis
[174] have originally proposed to control the excess risk via the theory of empirical processes. It gives rise
to slow rates O(n−1/2) for the excess risk (see also Vapnik [1998]). In the last decade, many authors have
improved such a bound by giving fast rates O(n−1) using the so-called localization technique (see Mam-
men and Tsybakov [1999],Koltchinskii and Panchenko [2000],Tsybakov [2004],Blanchard, Bousquet, and
Massart [2008], Blanchard, Lugosi, and Vayatis [2003], Koltchinskii [2006] , Massart and Nédélec [2006],

2. This idea (and precisely the equality in the middle of (3.11)) was initiated in Huber [1964] for robust estimation.
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Mendelson [2003], and the references therein). This field has been especially studied in classification
(see Boucheron et al. [27] for a nice survey). This complicated modus operandi requires a variance-risk
correspondence, equivalent to the so-called margin assumption. Interestingly enough, the next lemma
suggests to link the margin assumption with some smoothness conditions on the loss function as follows.

Lemma 6. Let X be a Rp-random variable with law PX and assume there exists a loss function ` :
Rp ×Rm → R+ such that R(·) = EPX `(X , ·). Let us consider an oracle defined in (3.9) and let U be the
Euclidean ball of center θ? and radius δ > 0 such that :

— θ 7→ `(X , θ) is twice differentiable on U , PX -almost surely ;
— R(·) = E`(X , ·) is three times differentiable on U and the partial derivatives of third order are

bounded ;
— the Hessian matrix HR(θ?) is positive definite.

Then, for δ sufficiently small, we have :

EPX [`(X , θ)− `(X , θ?)]2 ≤ 3κ1λ
−1
min [R(θ)−R(θ?)] , ∀θ ∈ U,

where κ1 = EPX supθ∈U |∇`(X , θ)|
2
2 and λmin is the smallest eigenvalue of HR(θ?).

Note that the regularity of the loss function implies a strong margin assumption, i.e. a power of the
excess risk equals to 1 in the RHS. Weaker margin assumptions - where the power of the excess risk
is less than 1 - have been considered in the literature (see Tsybakov [165], Koltchinskii [2006], Bartlett
and Mendelson [2006]) and allow them to obtain fast rates of convergence for the excess risk between
O(n−1/2) and O(n−1). However, to the best of our knowledge, these weaker margin assumptions are very
often related to non-smooth loss functions, such as the hinge loss or the hard loss in the specific context
of binary classification.

From the model selection point of view, standard penalization techniques - based on localization - suf-
fer from the dependency on parameters involved in the margin assumption. More precisely, in the strong
margin assumption framework, the construction of the penalty needs the knowledge of λmin, related to
the Hessian matrix of the risk. This constant especially coincides with the usual Fisher information in
maximum likelihood estimation. Although many authors have recently investigated the adaptivity w.r.t.
these parameters, by proposing “margin-adaptive” procedures (see Polzehl and Spokoiny [2006] for the
propagation method, Lecué [2007] for aggregation and Arlot and Massart [2009] for the slope heuristic),
the theory is not completed and remains a hard issue (see the related discussion in Section 3.2.7). As an
alternative, it is surprising to note that our data-driven procedure does not suffer from the dependency
on λmin since we focus on the G-excess risk.

3.2.2 Application : fast rates in clustering

As an illustration, we expound fast rates of convergence in clustering based on the gradient excess
risk approach. For this purpose, we go back to the classical statistical learning problem of clustering. Let
us consider an integer k ≥ 1 and a Rd-random variable X with law P with density f w.r.t. the Lebesgue
measure on Rd satisfying EP |X|22 <∞, where | · |2 stands for the Euclidean norm in Rd. We restrict the
study to [0, 1]d, assuming that X ∈ [0, 1]d almost surely. In the sequel, c = (c1, . . . , ck) ∈ (Rd)k is a set
of codebooks. Then, we want to construct a codebook c minimizing some risk or distortion :

(3.12) R(c) := EP `(c, X),

where `(c, x) measures the loss of the codebook c at point x. For ease of exposition, we study the
risk minimization of (3.12) based on the Euclidean distance, by choosing a loss function related to the
standard k-means loss function, namely :

`(c, x) = min
j=1,...,k

|x− cj |22, x ∈ Rd.

In the direct case, we have at our disposal an i.i.d. sample (X1, . . . , Xn) with law P and an associated
ERM :

(3.13) ĉ ∈ arg min
c∈Rdk

R̂(c), where R̂(c) :=
1

n

n∑
i=1

`(c, Xi).



50 CHAPTER 3 – BANDWIDTH SELECTION

Recently, Levrard [117] has proved fast rates of convergence O(n−1) under a margin assumption. The
first message of this paragraph is to highlight that using the gradient of (3.12), similar results could be
proved with a significantly simpler proof.

For this purpose, we assume that the Hessian matrix HR is positive definite at each oracle c?. As
viewed in the previous chapter, this assumption has been considered for the first time in Pollard [139]
and is often referred as the Pollard’s regularity assumptions. Under this assumption, we can state the
same kind of result as Lemma 5 in the framework of clustering with k-means.

Lemma 7. Let c? be a minimizer of (3.12) and assume HR(c?) is positive definite. Let us consider
C := {c = (c1, . . . , ck) ∈ [0, 1]dk : ∀i 6= j ∈ {1, . . . , k}, ci 6= cj}. Then :

— ∀x ∈ Rd, c 7→ `(c, x) is infinitely differentiable on C \∆x, where ∆x = {c ∈ [0, 1]dk : x ∈ ∂V (c)}
and ∂V (c) = {x ∈ Rd : ∃i 6= j such that |x− ci|2 = |x− cj |2} ;

— Let U be the Euclidean ball center at c? with radius δ > 0. Then, for δ sufficiently small :√
R(c)−R(c?) ≤ 2

√
2kd

λmin
|G(c, c?)|2, ∀c ∈ U,

where λmin > 0 is the smallest eigenvalue of HR(c?).

As mentioned above, we need the consistency - in terms of Euclidean distance - of the ERM ĉ defined
in (3.13) in order to obtain the inequality of Lemma 7 with c = ĉ. Pollard [139] has especially studied
the consistency of ĉ and allows us to satisfy our needs :

Theorem 10. Suppose the assumptions of Lemma 7 hold. Then, for n sufficiently large, the ERM ĉ
defined in (3.13) satisfies :

ER(ĉ)−R(c?) ≤
8b21kdλ

−2
min

n
,

where b1 > 0 is a constant.

The proof is a direct application of the heuristic (3.11). In particular, the study of an empirical process
based on the gradient leads to slow rates O(n−1/2) for the G-excess risk. Lemma 7 concludes the proof.

3.2.3 Kernel empirical risk minimization and examples

In this section, we are primarily interested in the kernel empirical risk minimization problem, where
a bandwidth is involved in the empirical risk. Let (Ω,F ,P) be a probability space and for some p ∈ N∗,
consider a Rp-random variable Z on (Ω,F ,P) with law P absolutely continuous w.r.t. the Lebesgue
measure. In what follows, we observe a sample Zn := {Z1, . . . , Zn} of independent and identically
distributed (i.i.d.) random variables with law P . The expectation w.r.t. the law of Zn is denoted by E.
Moreover, in the sequel, for some d ∈ N∗, we consider a kernel Kh : Rd → R of order r ∈ Nd and define
the kernel empirical risk indexed by an anisotropic bandwidth h ∈ H ⊂ (0, 1]d as :

(3.14) R̂h(θ) :=
1

n

n∑
i=1

`Kh(Zi, θ),

and an associated kernel empirical risk minimizer (kernel ERM) :

(3.15) θ̂h ∈ arg min
θ∈Rm

R̂h(θ).

In the sequel, the function `Kh : Rp × Rm → R+ is a loss function associated to a kernel Kh such that

θ 7→ `Kh(Z, θ) is twice differentiable P almost surely and such that R̂h is an asymptotically unbiased
estimator of the true risk R, i.e.

(3.16) lim
h→(0,...,0)

ER̂h(θ) = R(θ), ∀θ ∈ Rm.

The agenda is the data-driven selection of the “best” kernel ERM in the family {θ̂h, h ∈ H}. This problem
arises in many examples, such as local fitted likelihood (Polzehl and Spokoiny [2006]), image denoising



3.2. ANISOTROPIC CASE : THE GRADIENT [L7] 51

(Astola, Egiazarian, Foi, and Katkovnik [2010]), or robust nonparametric regression (Chichignoud and
Lederer [2013]). In such a framework, we observe a sample of i.i.d. pairs Zi = (Wi, Yi)

n
i=1 and the kernel

empirical risk has the following general form :

1

n

n∑
i=1

`Kh(Zi, θ) =
1

n

n∑
i=1

ρ(Zi, θ)Kh(Wi − x0),

where ρ(·, θ) is some likelihood whereas Kh(·) is a standard kernel function. Of course, we can also go
back to the previous inverse statistical learning context, where a deconvolution kernel K̃h(·) is involved
in the empirical risk, such as in (3.5).

In the sequel, we present the selection rule in the general context of kernel empirical risk minimization.
We especially deal with the noisy clustering in Section 3.2.5 whereas Section 3.2.6 is dedicated to robust
nonparametric regression.

3.2.4 General oracle inequality

The anisotropic bandwidth selection problem has been recently investigated in Goldenshluger and
Lepski [73] (GL method) in density estimation (see also Comte and Lacour [2013] in deconvolution
estimation and Goldenshluger and Lepski [2008], Goldenshluger and Lepski [2009] for the white noise
model). This method, based on the comparison of estimators, requires some “linearity” property, which is
trivially satisfied for kernel estimators in density estimation. However, kernel ERM are usually non-linear
(except for the least square estimator), and the GL method cannot be directly applied. A first trail would
be to compare the empirical risks (3.14) - viewed as estimators - instead of minimizers. This comparison
has been already employed with the ERC method, which is only suitable for isotropic bandwidths.
Unfortunately, as far as we know, the GL method cannot be performed by using this comparison. More
precisely, the requirement of the localization argument seems to be the main obstacle to the GL method.

To tackle this impasse, we introduce a new selection rule based on the comparison of gradient empi-
rical risks instead of kernel ERM (i.e. estimators as in Goldenshluger and Lepski [2011]). For any h ∈ H
and any θ ∈ Rm, the gradient empirical risk is defined as :

(3.17) Ĝh(θ) :=
1

n

n∑
i=1

∇`Kh(Zi, θ) =

(
1

n

n∑
i=1

∂

∂θj
`Kh(Zi, θ)

)
j=1,...,m

.

Note that we have coarsely Ĝh(θ̂h) = (0, . . . , 0)> since `Kh(Zi, ·) is twice differentiable almost surely.
According to (3.16), we also notice that the G-empirical risk is an asymptotically unbiased estimator of
the gradient of the risk.

As mentioned in Chapter 1, we need to introduce an auxiliary G-empirical risk in the comparison.
For any couple of bandwidths (h, h′) ∈ H2 and any θ ∈ Rm, the auxiliary G-empirical risk is defined as :

(3.18) Ĝh,h′(θ) :=
1

n

n∑
i=1

∇`Kh∗Kh′ (Zi, θ),

where Kh∗Kh′(·) :=
∫
Rd Kh(·−x)Kh′(x)dx stands for the convolution between Kh and Kh′ . The statement

of the main oracle inequality needs a control of the deviation of some random processes depending on
the auxiliary G-empirical risk. This control is given by the next definition.

Definition 7 (Majorant). For any integer l > 0, we call majorant a function Ml : H2 → R+ such that :

P

(
sup

h,h′∈H

{
|Ĝh,h′ − EĜh,h′ |2,∞ + |Ĝh′ − EĜh′ |2,∞ −Ml(h, h

′)
}

+
> 0

)
≤ n−l,

where |T |2,∞ := supθ∈Rm |T (θ)|2 for all T : Rm → Rm with | · |2 the Euclidean norm on Rm.
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The main issue for applications is to compute right order majorants. This could be done thanks to the
empirical process theory, such as Talagrand’s inequalities (see for instance Bousquet [2002], Goldensh-
luger and Lepski [2011]). In Section 3.2.5 and Section 3.2.6, such majorant functions are computed in
noisy clustering and in robust nonparametric regression.

We are now ready to define the selection rule called Empirical Gradient Comparison (EGC) as :

(3.19) ĥ = arg min
h∈H

B̂V(h),

where B̂V(h) is explicitly defined as :

B̂V(h) := sup
h′∈H

{
|Ĝh,h′ − Ĝh′ |2,∞ −Ml(h, h

′)
}

+M∞l (h), with M∞l (h) := sup
h′∈H

Ml(h
′, h).

The function B̂V(·) is based on the estimation of the following bias-variance decomposition :

(3.20) |G(θ̂h, θ
?)|2 ≤ sup

θ∈Rm
|G(θ)− Ĝh(θ)|2 := |G− Ĝh|2,∞ ≤ |EĜh −G|2,∞ + |Ĝh − EĜh|2,∞,

where the expectation E is understood coordinatewise and |T |2,∞ := supθ∈Rm |T (θ)|2 for all functions
T : Rm → Rm. The selection rule is constructed in a way that the selected bandwidth mimics the
oracle bandwidth h?, which trades off the bias-variance decomposition (3.20). The construction of B̂V(·)
consists of two steps : the variance (stochastic) term |Ĝh − EĜh|2,∞ is controlled thanks to Definition 7

whereas the bias term |EĜh −G|2,∞ is estimated with the auxiliary G-empirical risk (3.2.5).

The kernel ERM θ̂
ĥ

defined in (3.15) with bandwidth ĥ satisfies the following bound.

Theorem 11. Let Ml(·, ·) be a majorant according to Definition 7. For any n ∈ N∗ and for any l ∈ N∗,
we have with probability 1− n−l :

|G(θ̂
ĥ
, θ?)|2 ≤ 3 inf

h∈H
{B(h) +M∞l (h)} ,

where B(·) : H → R+ is a bias function defined as :

B(h) := max

(
|EĜh −G|2,∞, sup

h′∈H
|EĜh,h′ − EĜh′ |2,∞

)
, ∀h ∈ H.

Theorem 11 is the main result of this chapter. The G-excess risk of the data-driven estimator θ̂
ĥ

is
bounded with high probability. Of course, a bound in expectation can be deduced coarsely. The proof of
Theorem 11 (expounded below) is based on the definition of ĥ in (3.19). The first step is a decomposition
of the G-excess risk by using the auxiliary G-empirical risk (3.18). Then, Definition 7 completes the proof.

The RHS in the oracle inequality can be viewed as the minimization of the usual bias-variance trade-
off. Indeed, the bias term B(h) is deterministic and tends to 0 as h → (0, . . . , 0). The sup-majorant
M∞l (h) upper bounds the stochastic part of the G-empirical risk and is viewed as a variance term.

Theorem 11 can be seen as an oracle inequality since minimizing the bias-variance trade-off in the
RHS is sufficient to establish adaptive fast rates in noisy clustering and adaptive minimax rates in
nonparametric estimation (see Sections 3.2.5 and 3.2.6).

In order to show the power of the G-excess risk, we simultaneously deduce a control of the estimation
error |θ̂

ĥ
− θ?|2 as well as a bound for the excess risk R(θ̂

ĥ
) − R(θ?). In the presence of smooth loss

functions, Lemma 5 is at the origin of the following corollary.

Corollary 3. Suppose the assumptions of Lemma 5 are satisfied and for all h ∈ H, the estimator θ̂h of
θ? is consistent. Then, for n sufficiently large, for any l ∈ N∗, with probability 1− n−l, it holds :

R(θ̂
ĥ
)−R(θ?) ≤ 36

mκ1

λ2
min

inf
h∈H
{B(h) +M∞l (h)}2 ,

and

|θ̂
ĥ
− θ?|2 ≤ 6

√
mκ1

λmin
inf
h∈H
{B(h) +M∞l (h)} ,

where κ1, λmin are positive constants defined in Lemma 5.
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We highlight that the consistency of all estimators {θ̂h, h ∈ H} is necessary in order to apply Lemma 5.
This usually implies restrictions on the bandwidth set (see Sections 3.2.5 and 3.2.6 for further details).

The first inequality of Corollary 3 will be used in Section 3.2.5 in the setting of clustering with
errors-in-variables. In this case, we are interested in excess risk bounds and the statement of fast rates of
convergence. The second inequality of Corollary 3 is the main tool to establish minimax rates for both
pointwise and global risks in the context of robust nonparametric regression (see Section 3.2.6).

The construction of the selection rule (3.19), as well as the upper bound in Theorem 11, does not
suffer from the dependency of λmin related to the smallest eigenvalue of the Hessian matrix of the risk
(see Lemma 5). In other words, the method is robust w.r.t. this parameter, which is a major improvement
in comparison with other adaptive or model selection methods of the literature.

Proof (of theorem 11): For some h ∈ H, we start with the following decomposition :

|G(θ̂
ĥ
, θ?)|2 =

∣∣(Ĝ
ĥ
−G)(θ̂

ĥ
)
∣∣
2
≤ |Ĝ

ĥ
−G|2,∞

≤ |Ĝ
ĥ
− Ĝ

ĥ,h
|2,∞ + |Ĝ

ĥ,h
− Ĝh|2,∞ + |Ĝh −G|2,∞.(3.21)

By definition of ĥ in (3.19), the first two terms in the RHS of (3.21) are bounded as follows :

|Ĝ
ĥ
− Ĝ

ĥ,h
|2,∞ + |Ĝ

ĥ,h
− Ĝh|2,∞ = |Ĝ

h,ĥ
− Ĝ

ĥ
|2,∞ −M`(h, ĥ) +M`(ĥ, h)

+ |Ĝ
ĥ,h
− Ĝh|2,∞ −M`(ĥ, h) +M`(h, ĥ)

≤ sup
h′∈H

{
|Ĝh,h′ − Ĝh′ |2,∞ −M`(h, h

′)
}

+M∞` (h)

+ sup
h′∈H

{
|Ĝ

ĥ,h′
− Ĝh′ |2,∞ −M`(ĥ, h

′)
}

+M∞` (ĥ)

= B̂V(h) + B̂V(ĥ) ≤ 2B̂V(h).(3.22)

Besides, the last term in (3.21) is controlled as follows :

|Ĝh −G|2,∞ ≤ |Ĝh − EĜh|2,∞ + |EĜh −G|2,∞
≤ |Ĝh − EĜh|2,∞ −Ml(h, h) +Ml(h, h) + |EĜh −G|2,∞

≤ sup
h,h′

{
|Ĝh,h′ − EĜh,h′ |2,∞ + |Ĝh′ − EĜh′ |2,∞ −Ml(h, h

′)
}

+M∞l (h) + |EĜh −G|2,∞
=: ζ +M∞l (h) + |EĜh −G|2,∞.

Using (3.21) and (3.22), gathering with the last inequality, we have for all h ∈ H :

(3.23) |G(θ̂
ĥ
, θ?)|2 ≤ 2B̂V(h) + ζ +M∞l (h) + |EĜh −G|2,∞.

It then remains to control the term B̂V(h). We have :

B̂V(h)−M∞l (h) ≤ sup
h,h′

{
|Ĝh,h′ − EĜh,h′ |2,∞ + |Ĝh′ − EĜh′ |2,∞ −Ml(h, h

′)
}

+ sup
h′
|EĜh,h′ − EĜh′ |2,∞ = ζ + sup

h′
|EĜh,h′ − EĜh′ |2,∞.

The oracle inequality follows directly from (3.23), Definition 7 and the definition of ζ.

3.2.5 Adaptive fast rates in anisotropic noisy clustering

We have at our disposal a family of kernel ERM {ĉh, h ∈ H} defined in (3.4) with associated kernel
empirical risk R̂h(c) = 1

n

∑n
i=1 `(c, ·) ∗ K̃h(Zi− ·), with K̃h a deconvolution kernel. In this paragraph, we
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propose to apply the selection rule (3.19) to choose the bandwidth h ∈ H in an anisotropic framework.
For any h ∈ H, the G-empirical risk vector is defined as :

Ĝh(c) :=

(
1

n

n∑
i=1

2

∫
Vj(c)

(xu − cuj)K̃h(Zi − x)dx

)
u=1,...,d,j=1,...,k

∈ Rdk, ∀c ∈ Rdk,

where for any j = 1, . . . , k, Vj(c) := {x ∈ [0, 1]d : arg mina=1,...,k |x − ca|2 = j} is the Voronöı cells

associated to c, and xu denotes the uth coordinate of x ∈ Rd. Note that Ĝh(ĉh) = (0, . . . , 0)> by
smoothness. The construction of the rule follows exactly the general case of Section 3.2.4, which is based
on the introduction of an auxiliary G-empirical risk. For any couple of bandwidths (h, h′) ∈ H2, the
auxiliary G-empirical risk is defined as :

Ĝh,h′(c) :=

(
1

n

n∑
i=1

2

∫
Vj(c)

(xu − cuj)K̃h,h′(Zi − x)dx

)
u=1,...,d,j=1,...,k

∈ Rdk, ∀c ∈ Rdk,

where K̃h,h′ = ˜Kh ∗ Kh′ is the auxiliary deconvolution kernel as in Comte and Lacour [51].

The statement of the oracle inequality is based on the computation of a majorant function. For this
purpose, we need to consider a kernel Kh of order r ∈ Nd satisfying the Kernel assumption (see Chapter
2), for some S = (S1, . . . , Sd) ∈ Rd+. Additionally, we need an assumption on the noise distribution η.
We suppose in the sequel that NA(ρ, β) holds, for some β = (β1, . . . , βd) ∈ (0,∞)d and some positive
constant ρ.

We are now ready to compute the majorant function in our context. Let H := [h−, h
+]d be the

bandwidth set such that 0 < h− < h+ < 1,

(3.24) h− :=

(
log6(n)

n

)1/max(2,2
∑d
j=1 βj)

and h+ :=
(
1/ log(n)

)1/(2s+)
,

for some s+ > 1.

Lemma 8. Assume the Kernel assumption and NA(ρ, β) hold for some ρ > 0 and some β ∈ Rd+.
Let a ∈ (0, 1) and consider Ha := {(h−, . . . , h−)} ∪ {h ∈ H : ∀j = 1, . . . , d ∃mj ∈ N : hj = h+amj} an
exponential net of H = [h−, h

+]d, such that |Ha| ≤ n. For any integer l > 0, let us introduce the function
Mk

l : H2 → R+ defined as :

Mk
l (h, h

′) := b′1
√
kd

(
Πd
i=1h

−βi
i√
n

+
Πd
i=1(hi ∨ h′i)−βi√

n

)
,

where b′1 > 0. Then, for n sufficiently large, the function Mk
l is a majorant, i.e.

P

(
sup

h,h′∈Ha

{
|Ĝh,h′ − EĜh,h′ |2,∞ + |Ĝh′ − EĜh′ |2,∞ −Mk

l (h, h
′)
}

+
> 0

)
≤ n−l,

where E denotes the expectation w.r.t. the sample and |T |2,∞ = supc∈[0,1]dk |T (c)|2 for T : Rdk → Rdk

with | · |2 the Euclidean norm on Rdk.

The proof is based on a chaining argument and a Talagrand’s inequality. This lemma is the cornerstone
of the oracle inequality below, and gives the order of the variance term in such a problem.

We are now ready to define the EGC selection rule in noisy clustering as :

(3.25) ĥ = arg min
h∈Ha

{
sup
h′∈Ha

{
|Ĝh,h′ − Ĝh′ |2,∞ −Mk

l (h, h
′)
}

+Mk,∞
l (h)

}
,

where Mk,∞
l (h) := suph′∈HaM

k
l (h
′, h). The next theorem gives a control of the G-excess risk of the

kernel ERM ĉ
ĥ
.
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Corollary 4. Assume NA(ρ, β) hold for some ρ > 0 and some β ∈ Rd+. Then, for n large enough, With
probability 1− n−l, it holds :

|G(ĉ
ĥ
, c?)|2 ≤ 3 inf

h∈Ha

{
Bk(h) +Mk,∞

l (h)
}
,

where Bk : H → R+ is a bias function defined as :

Bk(h) := 2
√
k (1 ∨ |F [K]|∞) |Kh ∗ f − f |2, ∀h ∈ H.

The proof of Theorem 4 is an application of Theorem 11 gathering with Lemma 8. Note that the infimum
in the RHS is restricted over the net Ha. However, as shown in Theorem 12 below, this is sufficient to
obtain adaptive optimal fast rates.

As mentioned in the previous section, we can deduce fast rates for the excess risk as an important
theorem. For this purpose, we need an additional assumption on the regularity of the density f to control
the bias function in Theorem 4. This regularity is expressed here in terms of anisotropic Nikol’skii space.

Definition 8 (Anisotropic Nikol’skii Space). Let s = (s1, s2, . . . , sd) ∈ Rd+, q ≥ 1 and L > 0 be fixed.
We say that f : [0, 1]d → [−L,L] belongs to the anisotropic Nikol’skii space Nq(s, L) of functions if for
all j = 1, ..., d, z ∈ R and for all x ∈ (0, 1]d :

(∫ ∣∣∣Dbsjcj f(x1, . . . , xj + z, . . . , xd)−D
bsjc
j f(x1, . . . , xj , . . . , xd)

∣∣∣q dx)1/q

≤ L|z|sj−bsjc,

and ‖Dl
jf‖q ≤ L, ∀l = 0, . . . , bsjc, where Dl

jf denotes the l-th order partial derivative of f w.r.t. the
variable xj and bsjc is the largest integer strictly less than sj.

The Nikol’skii spaces have been considered in approximation theory by Nikol’skii (see Nikol’skii [1975]
for example). We also refer to Goldenshluger and Lepski [2011], Kerkyacharian, Lepski, and Picard [2001]
where the problem of adaptive estimation over a scale s has been treated for the Gaussian white noise
model and for density estimation, respectively.

In the sequel, we assume that the multivariate density f of the law PX belongs to the anisotropic
Nikol’skii class N2(s, L), for some s ∈ Rd+ and some L > 0. It means that the density f has possible
different regularities in all directions.

Theorem 12. Assume the Kernel assumption and NA(ρ, β) hold for some ρ > 0 and some β ∈ Rd+.
Assume the Hessian matrix of R is positive definite for any c? ∈M. Then, for any s ∈ (0, s+)d, L > 0 :

lim sup
n→∞

n1/(1+
∑d
j=1 βj/sj) sup

f∈N2(s,L)
E
[
R(ĉ

ĥ
)−R(c?)

]
<∞,

where ĥ is chosen in (3.25).

This theorem uses Corollary 4 and Lemma 7, gathering with the consistency of the family of kernel ERM
{ĉh, h ∈ H}. In this respect, the definitions of h− and h+ in (3.24), gathering with the continuity of the
density f , imply the consistency of our family.

This result gives adaptive fast rates for the excess risk of ĉ
ĥ
. It improves the result stated in Section

3.1.2 with ERC (see Theorem 9) for two main reasons. First of all, the selection rule allows the extension
to the anisotropic case. Besides, there is no logarithmic term in the adaptive rate. The localization
technique used in the previous result seems the main obstacle to avoid the extra-log term. The G-excess
risk approach avoids the localization technique and therefore the extra-log term in the adaptive fast
rates. The result of Theorem 12 also extend the result to Nikol’skii spaces instead of Hölder spaces.
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3.2.6 Anisotropic adaptive minimax rates for nonlinear estimators

In this subsection, we apply the result of Theorem 11 to state minimax adaptive rates of convergence
for nonlinear estimators in the framework of local M-estimation. As in noisy clustering, the previous
oracle inequality for the G-excess risk will give us adaptive minimax results for both pointwise and
global estimation.

Let us specify the model beforehand. For some n ∈ N∗, we observe a training set Zn := {(Wi, Yi), i = 1, ...n}
of i.i.d. pairs distributed according to the probability measure P on [0, 1]d×R satisfying the set of equa-
tions :

(3.26) Yi = f?(Wi) + ξi, i = 1, . . . , n,

where the noise variables (ξi)i=1,...,n are i.i.d. with symmetric density gξ w.r.t. the Lebesgue measure.
We aim at estimating the target function f? : [0, 1]d → [-B,B], B > 0. Moreover, we also assume that
gξ is continuous at 0 and gξ(0) > 0. For simplicity, in the sequel, the design points (Wi)i=1,...,n are i.i.d.
according to the uniform law on [0, 1]d (extension to a more general design is straightforward) and we
suppose that (Wi)i=1,...,n and (ξi)i=1,...,n are mutually independent for ease of exposition. Eventually, we
restrict the estimation of f? to the closed set T ⊂ [0, 1]d to avoid discussion on boundary effects. We
will consider the point x0 ∈ T for pointwise estimation and the Lq(T )-risk for global estimation.

Next, we introduce an estimate of f?(x0) at any x0 ∈ T with the local constant approach (LCA) with
a fixed bandwidth. The key idea of LCA, as described for example in [167, Chapter 1], is to approximate
the target function in a neighborhood of size h ∈ (0, 1)d of a given point x0 by a constant, which
corresponds to a model of dimension m = 1. To deal with heavy-tailed noises, we especially employ the
popular Huber loss (see Huber [1964]) defined as follows. For any scale H > 0 and z ∈ R,

ρH(z) :=


z2/2 if |z| ≤ H

H(|z| −H/2) otherwise.

The parameter H > 0 selects the level of robustness of the Huber loss between the square loss (large
value of H) and the absolute loss (small value of H).

Let H := [h−, h
+]d be the bandwidth set such that 0 < h− < h+ < 1,

h− :=
log6/d(n)

n1/d
and h+ :=

1

log2(n)
.

For any x0 ∈ T , the local estimator f̂h(x0) of f?(x0) is defined as 3 :

f̂h(x0) := arg min
t∈[-B,B]

R̂loc
h (t), h ∈ H,

where R̂loc
h (·) := 1

n

∑n
i=1 ρH(Yi − ·) Kh(Wi − x0) is the local empirical risk and Kh is a 1-Lipschitz, non-

negative kernel of order 1. As in (3.16), the expectation of the local empirical risk has a limit denoted
by Rloc(·) := EY |W=x0ρH(Y − ·) whose its unique minimizer is f?(x0).

To end up this chapter, we are interested in the bandwidth selection problem in the family {f̂h, h ∈
H}, where H is defined above. We want to state minimax adaptive results for both pointwise and global
risks. Since Theorem 11 controls the G-excess risk of the adaptive estimator, we present the following
lemma that gives rive to a control of the pointwise risk. A same inequality can be deduced with the
Lq(T )-norm.

Lemma 9. Assume that suph∈H |f̂h(x0)− f?(x0)| ≤ Eρ′′H(ξ1)/4. Then, for all h ∈ H,

|f̂h(x0)− f?(x0)| ≤ 2

Eρ′′H(ξ1)

∣∣∣Gloc
(
f̂h(x0)

)
−Gloc

(
f?(x0)

)∣∣∣ ,
where Gloc (and resp. ρ′′H) denotes the derivative of Rloc (resp. the second derivative of ρH).

3. We use in the sequel f̂h(·) for the estimator of f? in (3.26). This estimator is NOT a kernel estimator f̂h(·) as before,
but a minimizer of a kernel empirical risk.
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The assumption suph∈H |f̂h(x0) − f?(x0)| ≤ Eρ′′H(ξ1)/4 is necessary to use the theory of differential

calculus and can be satisfied by using the consistency of f̂h. In this direction, the definitions of h−
and h+ above imply the consistency of all estimators f̂h, h ∈ H (see Theorem 1 in Chichignoud and
Lederer [2013] for further details). This lemma allows us to link the local G-excess risk and the pointwise
semi-norm.

The selection rule in pointwise estimation

To compute the selection procedure in pointwise estimation, we define the G-empirical risk as :

(3.27) Ĝloc
h (t) :=

∂R̂loc
h

∂t
(t) = − 1

n

n∑
i=1

ρ′H
(
Yi − t

)
Kh(Wi − x0).

For any couple of bandwidths (h, h′) ∈ H2, we introduce the auxiliary G-empirical risk as :

Ĝloc
h,h′(t) := − 1

n

n∑
i=1

ρ′H
(
Yi − t

)
Kh,h′(Wi − x0),

where Kh,h′ := Kh ∗ Kh′ as above.
To apply the results of Section 3.2.4, we need to compute optimal majorants of the associated

empirical processes. The construction of such bounds for the pointwise case has already deserved some
interests. For any integer l ∈ N∗, let us introduce the function Mloc

l : H2 → R+ defined as :

Mloc
l (h, h′) := C0‖K‖2

√
E[ρ′H(ξ1)]2

(√
l log(n)

n
∏d
i=1 hi ∨ h′i

+

√
l log(n)

n
∏d
i=1 h

′
i

)
,

where C0 > 0 is an absolute constant which does not depend on the model.
Let Ha := {(h−, . . . , h−)}∪ {h ∈ H : ∀j = 1, . . . , d ∃mj ∈ N : hj = h+amj} , a ∈ (0, 1), be an exponen-
tial net of H = [h−, h

+]d, such that |Ha| ≤ n. Then, for any l > 0, the function Mloc
l (·, ·) is a majorant,

i.e. :

P

(
sup

h,h′∈Ha

{
|Ĝloc

h,h′ − EĜloc
h,h′ |∞ + |Ĝloc

h′ − EĜloc
h′ |∞ −Mloc

l (h, h′)
}

+
> 0

)
≤ n−l,

We notice that, unlike Definition 7, | · |2,∞ is replaced by | · |∞ since the G-empirical risk (3.27) is
unidimensional.

Eventually, we introduce the data-driven bandwidth following the schema of the selection rule in
Section 3.2.4 :

(3.28) ĥloc := arg min
h∈Ha

{
sup
h′∈Ha

{
|Ĝloc

h,h′ − Ĝloc
h′ |∞ −Mloc

l (h, h′)
}

+ 2Mloc,∞
l (h)

}
,

whereMloc,∞
l (h) := suph′∈HaM

loc
l (h′, h). We are now ready to give the oracle inequality for the pointwise

risk :

Corollary 5. Consider the model (3.26) and assume that n is great enough. Then, for any l > 0, with
probability 1− n−l, we have :

|f̂
ĥloc

(x0)− f?(x0)| ≤ 6

Eρ′′H(ξ1)
inf
h∈Ha

{
Bloc(h) + 2Mloc,∞

l (h)
}
,

where Bloc(h) denotes the bias term Bloc(h) :=
∫
Kh(x− y) |f?(x)− f?(y)| dx.

The proof is a direct application of Theorem 11 and Lemma 9, since Gloc(f?(x0)) = 0 and

sup
h′∈H

Mloc
l (h′, h) =Mloc,∞

l (h).
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Note that the infimum in the RHS of Theorem 5 is restricted to the net Ha. However, as shown in
Theorem 13 below, this is sufficient to obtain minimax adaptive results.

Chichignoud and Lederer [2013] have shown that the variance of local M-estimators is of order
E[ρ′H(ξ1)]2/n(Eρ′′H(ξ1))2. Therefore, their Lepski-type procedure depends on this quantity. Here, we ob-
tain the same result without the dependency on the parameter Eρ′′H(ξ1) - which corresponds to λmin in
the general setting - thanks to the gradient approach. The selection rule is therefore robust w.r.t. to the
fluctuations of this parameter, in particular when H is small (median estimator).

Now, we focus on the minimax issue for pointwise estimation by giving the following theorem :

Theorem 13. For any s ∈ (0, 1]d, any L > 0 and any q ≥ 1, it holds for all x0 ∈ T :

lim sup
n→∞

(n/ log(n))qs̄/(2s̄+1) sup
f?∈Σ(s,L)

E
∣∣∣f̂ĥloc(x0)− f?(x0)

∣∣∣q <∞,
where s̄ :=

(∑d
j=1 s

-1
j

)-1
denotes the harmonic average and Σ(s, L) denotes the anisotropic Hölder class

of Definition 5 (see Chapter 2).

The proposed estimator f̂
ĥ

is then adaptive minimax over anisotropic Hölder spaces in pointwise estima-
tion. The minimax optimality of this rate (with the log(n) factor) has been stated by Klutchnikoff [2005]
in the white noise model for pointwise estimation (see also Goldenshluger and Lepski [2008]). We did not
study the case of locally polynomial functions, which is further complicated to study in nonparametric
regression. In this case, we could consider smoother functions f? ∈ Σ(s, L), with s ∈ (0, s+)d, s+ > 1.

The selection rule in global estimation

The aim of this paragraph is to derive adaptive minimax results for f̂h in Lq-risk. To this end, we
need to modify the selection rule (3.28) including a global (Lq-norm) comparison of G-empirical risks.
For this purpose, for all t ∈ R, we denote the G-empirical risks at a given point x0 ∈ T as :

Ĝglo
h (t, x0) = − 1

n

n∑
i=1

ρ′H
(
Yi − t

)
Kh(Wi − x0) and Ĝglo

h,h′(t, x0) = − 1

n

n∑
i=1

ρ′H
(
Yi − t

)
Kh,h′(Wi − x0),

where the dependence in x0 is explicitly written. We then define, for q ∈ [1,∞[ and for any function
ω : R× T → R, the Lq-norm and Lq,∞-semi-norm :

‖ω(t, ·)‖q :=

(∫
T
|ω(t, x)|qdx

)1/q

and ‖ω‖q,∞ := sup
t∈[−B,B]

‖ω(t, ·)‖q.

The construction of majorants is based on uniform bounds for Lq-norms of empirical processes. This
topic has been recently investigated in Goldenshluger and Lepski [2011]. For any l ∈ N∗, let us introduce
the function Γl,q : H → R+ defined as :

Γl,q(h) := Cq‖ρ′H‖∞
√

1 + l ×


4‖K‖q(nΠh)−(q−1)/q if q ∈ [1, 2[,

30q
log(q)(‖K‖2 ∨ ‖K‖q)(nΠh)−1/2 if q ∈ [2,∞[,

where Πh =
∏d
j=1 hj and Cq > 0 is an absolute constant which does not depend on n. Then, for any

l > 0, the function Mglo
l,q (h, h′) := Γglo

l,q (h ∨ h′) + Γglo
l,q (h′) is a majorant, i.e. :

P

(
sup

h,h′∈H

{
‖Ĝglo

h,h′ − EĜglo
h,h′‖q,∞ + ‖Ĝglo

h′ − EĜglo
h′ ‖q,∞ −M

glo
l,q (h, h′)

}
+
> 0

)
≤ n−l,

where the constant Cq can be explicitly given.

We finally select the bandwidth according to the EGC rule in Section 3.2.4 :

ĥglo
q := arg min

h∈H

{
sup
h′∈H

{
‖Ĝglo

h,h′ − Ĝ
glo
h′ ‖q,∞ −M

glo
l,q (h, h′)

}
+ 2Γl,q(h)

}
.



3.2. ANISOTROPIC CASE : THE GRADIENT [L7] 59

Corollary 6. Consider the model (3.26) and assume that n is great enough. For any l > 0, we then
have with probability 1− n−l :

‖f̂
ĥgloq
− f?‖q ≤

6

Eρ′′H(ξ1)
inf
h∈H

{
Bglo
q (h) + 2Γglo

l,q (h)
}
,

where Bglo
q (h) :=

∥∥∫ Kh(x− ·)
∣∣f?(x)− f?(·)

∣∣dx∥∥
q

is called the global bias term.

We notice that there is no restriction about the infimum over H - compared to the local oracle inequality
- which is due to the construction of majorant. The proof is based on the same scheme as the proof of
Theorem 11, by adding the Lq-norm. Gathering with a global version of Lemma 9 (i.e. a control of the
Lq-norm instead of the pointwise semi-norm), we get the result.

The above choice of the bandwidth leads to the estimator f̂
ĥgloq

with the following adaptive minimax

properties for the Lq-risk over anisotropic Nikol’skii spaces (see Definition 8 in Section 3.2.5).

Theorem 14. For any s ∈ (0, 1]d, any L > 0 and any q ≥ 1, it holds :

lim sup
n→∞

ψ-1
n,q(s) sup

f?∈Nq,d(s,L)
E‖f̂

ĥgloq
− f?‖qq <∞

where s̄ :=
(∑d

j=1 s
-1
j

)-1
denotes the harmonic average and

ψn,q(s) :=


(1/n)q(q−1)s̄/(qs̄+q−1) if q ∈ [1, 2[,

(1/n)qs̄/(2s̄+1) if q ≥ 2.

We refer to Has’minskii and Ibragimov [1990], Has’minskii and Ibragimov [1981] for the minimax opti-
mality of these rates over Nikol’skii spaces. The proposed estimate f̂

ĥgloq
is then adaptive minimax. To

the best of our knowledge, the minimax adaptivity over anisotropic Nikol’skii spaces has never been done
in regression with possible heavy-tailed noises. As in pointwise estimation, this result could be extended
to the case of local polynomial functions of order k ≥ 1.

3.2.7 Discussion

This section deals with the bandwidth selection problem in kernel empirical risk minimization. We
propose a new criterion called the gradient excess risk (3.10), which allows us to derive optimal fast rates
of convergence for the excess risk as well as adaptive minimax rates for global and pointwise risks.

One of the key messages we would like to highlight is the following : if we consider smooth loss
functions and a family of consistent ERM, fast rates of convergence are automatically reached provided
that the Hessian matrix of the risk function is positive definite. This statement is based on the key
Lemma 5 where the square root of the excess risk is controlled by the G-excess risk.

From an adaptive point of view, another look at Lemma 5 can be done. In the RHS of Lemma 5, the
G-excess risk is multiplied by the constant λ−1

min, i.e. the smallest eigenvalue of the Hessian matrix at θ?.
This parameter is also involved in the margin assumption (see Lemma 6). As a result, our selection rule
does not depend on this parameter since the margin assumption is not required to obtain slow rates for
the G-excess risk. This fact partially solves an issue highlighted by Massart [126, Section 8.5.2], in the
model selection framework :

“It is indeed a really hard work in this context to design margin adaptive penalties. Of
course recent works on the topic, involving local Rademacher penalties for instance, provide
at least some theoretical solution to the problem but still if one carefully looks at the penalties
which are proposed in these works, they systematically involve constants which are typically
unknown. In some cases, these constants are absolute constants which should nevertheless
considered as unknown just because the numerical values coming from the theory are obviously
over pessimistic. In some other cases, it is even worse since they also depend on nuisance
parameters related to the unknown distribution.”
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We can also mention the work of Koltchinskii [100], who has studied the general margin assumption. In
this context, a “link function” ϕ : R+ → R+ describes the relationship between the excess risk and the
variance term, i.e.

ϕ

(√
EPX [`(X , θ)− `(X , θ?)]2

)
≤ R(θ)−R(θ?),

for all θ belongs to a ball of θ?. In our context, with smooth loss functions, the link function corresponds
to the square function : ϕ(x) = Cx2, ∀x ∈ R+ with C = λmin/(3κ1) (see Lemma 6). Koltchinskii [100,
Section 6.3] has highlighted the issue of the adaptivity w.r.t. the link function as follows :

“It happens that the link function is involved in a rather natural way in the construction
of complexity penalties that provide optimal convergence rates in many problems. Since the
link function is generally distribution dependent, the development of adaptive penalization
methods of model selection is a challenge, for instance, in classification setting.”

3.3 Computation of ERC and EGC [L12]

In this chapter, adaptive fast rates of convergence have been proved for two bandwith selection
methods. The first one, called ERC, allows to obtain good theoretical guarantees in the isotropic case.
The second one, called EGC, allows to consider the anisotropic framework. These methods are based
on Lepski’s heuristic (see Lepski [1990]) and consists in comparing empirical criteria (such as empirical
risk in ERC or empirical gradient for EGC) for different values of the bandwidth. Whereas the origin
of Lepski’s method is mainly theoretical, practical issues have also deserved some attentions in the last
decade. The main contribution to this field is perhaps the intersection of confidence intervals (ICI)
rule (see Katkovnik [1999]), which computes the isotropic Lepski’s principle in a 1-dimensional grid of
increasing bandwidths. This algorithm is at the core of many applications in image denoising, where data-
driven selection rule are of practical interest (see Kervrann and Boulanger [2006], Astola, Egiazarian,
Foi, and Katkovnik [2010] and references therein). For the anisotropic case, Comte and Lacour [2013]
also computes the anisotropic GL method in a deconvolution setting. In this section, we investigate the
computation of the two selection methods proposed in Section 3.1-3.2 in the framework of clustering
with errors-in-variables.

3.3.1 Model and notations

In this section, we are interested in clustering with errors-in-variables. Let us consider a noisy sample :

Zi = Xi + εi, i = 1, . . . , n,(3.29)

where as before Xi, i = 1, . . . , n are i.i.d. with density f with respect to the Lebesgue measure and εi,
i = 1, . . . , n are i.i.d. with density η. Given some integer k ≥ 2, we want to summarize the dataset Xi,
i = 1, . . . , n with the sequence of observations Zi, i = 1, . . . , n. As a rule, we use a density deconvolution
estimator :

f̂h(x) =
1

n

n∑
i=1

K̃h (Zi − x) ,

where h ∈ Rd+ is a bandwidth parameter. In the sequel, we are interested in the data-driven choice

of h. Given a kernel deconvolution estimator f̂h, we consider the family of noisy k-means estimators
{ĉh, h ∈ H}, where for a given bandwidth h, ĉh is defined as the minimizer of the deconvolution empirical
risk R̂h(·) defined in (3.5).

The empirical risk R̂h(·) is of first interest in this section. This quantity will be evaluated for different
values of h ∈ H, where H ⊂ R+ is a given grid of bandwidth. More precisely, the computation of R̂h(·)
for increasing values of h will be at the core of the ICI rule defined in Section 3.3.2. However, as it was
shown in Section 3.2, this empirical risk is not suitable in the anisotropic case. As a result, we introduce
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in the sequel a second bandwidth selection based on the computations of the gradient of R̂h(·). For any
given h ∈ Rd+, we also defined the empirical gradient as :

Ĝh(c) =

(
1

n

n∑
i=1

2

∫
Vj(c)

(xu − cuj)K̃h(Zi − x)dx

)
u=1,...,d,j=1,...,k

∈ Rdk, ∀c ∈ Rdk,(3.30)

where for any j = 1, . . . , k, Vj(c) := {x ∈ [0, 1]d : arg mina=1,...,k |x − ca|2 = j} is the Voronöı cells
associated to c, and xu denotes the uth coordinate of x ∈ Rd. In the sequel, we suggest to compare (3.30)
at different values of h in order to construct an data-driven bandwidth ĥ in the anisotropic framework.

Note that to construct the family of estimators {ĉh, h ∈ H}, we use an alteration of the popular
k-means algorithm of Hartigan [1975]. At each iteration, a deconvolution kernel function is involved
in the Newton optimization. Unfortunately, the minimization problem is not convex and we can only
compute a local minimizer. As a result, the solution depends strongly on the initialization step in the
algorithm and affects significantly the problem of bandwidth selection. At the light of Section 3.1, ERC
rule compares empirical risks R̂h(·) at given global minimizers ĉh, which is not achievable in practice. In
Section 3.2, EGC rule is introduced as a non-convex optimization problem related with the minimization
of (3.30). With these considerations in mind, we expect that, up to some optimization intrinsic difficulties,
computations of ERC and EGC can lead to efficient performances, at least in comparison with standard
k-means. In this direction, multiple initializations could be proposed for both the noisy k-means algorithm
and the choice of the bandwidth (see Open Problem 10).

In the isotropic case, we can consider a one-dimensional grid H ⊂ R made of L values. We denote it
as Hiso in the sequel. Equipped with this grid, we use a sequential procedure based on the ICI rule to
deal with the isotropic choice of the bandwidth. Loosely speaking, for increasing values of bandwidths
h ∈ Hiso, we construct an intersection of confidence intervals and stops when this intersection is the empty
set. In the anisotropic case, we restrict the study to the two-dimensional case for computational issues
(d = 2 in (3.29)). We consider a two-dimensional bandwidth (h1, h2) and consider a set Haniso of L× L
values. Given this two-dimensional grid, we minimize an estimate of the bias-variance decomposition
of the gradient excess risk. This estimation is computed thanks to (3.30) and the introduction of an
auxiliary empirical gradient defined below.

3.3.2 ICI rule for ERC

The ICI method is a now popular bandwidth selection method. It was proposed by Katkovnik [1999]
as an alteration to the theoretical Lepski’s method. The implementation is very simple and does not need
the computation of all the estimators in the family, in comparison to the Lepski’s method. It has been
successfully applied in various areas, such as image processing (see Astola, Egiazarian, and Katkovnik
[2002], Astola, Egiazarian, Foi, and Katkovnik [2010]). In our case, we want to use an ICI-based method
to implement the ERC method.

In Section 3.1, the ERC selection rule allows a theoretical well justified method to design noisy k-
means with adaptive properties. The selected bandwidth does not depend on the regularity of the density
f in (3.29). The data-driven bandwidth chosen with ERC is given by :

ĥ = max
{
h ∈ Hiso : R̂h′(ĉh)− R̂h′(ĉh′) ≤ 3δh′ , ∀h′ ≤ h

}
.(3.31)

As discussed later on, the principal motivation to introduce ERC in to compare empirical risks instead
of estimators. Then, in order to apply the ICI rule to (3.31), we choose to replace intervals centered
at pointwise estimators (see Katkovnik [1999]) by intervals centered at empirical risks R̂h(ĉh). This
motivates the introduction of a sequence of intervals (Dk)Lk=1 such that :

Dk =

[
R̂k − Ciso

h−2β
k log(n)

n
; R̂k + Ciso

h−2β
k log(n)

n

[
, ∀k = 1, . . . , L,(3.32)
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where in (3.32), Ciso > 0 and for any bandwidth hk ∈ Hiso, R̂k := R̂hk(ĉhk). Then, the selected bandwidth

ĥICI according to ICI rule is selected according to :

ĥICI := max {hk, k = 1, . . . , |Hiso| : Ik 6= ∅} where Ik =
k⋂
j=1

Dk.(3.33)

The ICI rule (3.33) can be interpreted as follows. The first interval D1 is constructed thanks to (3.32)
with h1. Then, the second interval D2 is constructed with h2 > h1 and I2 = D1 ∩ D2 is computed.
If I2 = ∅, the algorithm stops and the selected bandwidth is ĥICI = h1. Otherwise, D3 is constructed
and I3 = I2 ∩ D3 is built. If I3 = ∅, the algorithm stops and ĥICI = h2. At each iteration k, a new
intersection Ik is obtained and we stop when the result has no point. The selected bandwidth is the
maximal value of k such that Ik 6= ∅. Figure 3.1 illustrates the method. It is important to notice that the
chosen bandwidth made the better compromise between bias and variance of the decomposition of the
excess risk. Indeed, when k increases in the algorithm, the bias increases whereas the variance decreases.
Then, the lengths of the Ik’s are decreasing whereas the centers of Ik’s have increasing variability. As a
result, we propose to stop the algorithm when the intersection of intervals Dk becomes the empty set.

Figure 3.1 : llustration of ICI rule for noisy k-means.

It is important to stress that the proposed method depends on a threshold term C > 0 in (3.32).
This problem was studied in Spokoiny and Vial [2009] using the propagation method.

3.3.3 Anisotropic EGC method

The EGC (Empirical Gradient Comparison) rule is an anisotropic bandwidth selection rule. It was
motivated in Section 3.2 where general adaptive properties have been stated in kernel empirical risk
minimization problems. Here, we propose to use this method in clustering with errors-in-variables to
illustrate the results of Section 3.2.

The EGC rule is based on the computation of gradient empirical risk as in (3.30) instead of empirical
risk as in ERC. The principal motivation to use the gradient is summarized in Section 3.2, where EGC
rule is described precisely. In the context of noisy clustering, the data-driven bandwidth is defined as :

ĥEGC = arg min
h∈Haniso

B̂V(h),(3.34)

where B̂V(h) is an estimation of the bias-variance decomposition of the excess risk. This quantity is
based on the introduction of an auxiliary kernel :

K̃h,h′ = F−1

[
F [Kh ∗ Kh′ ]
F [η]

]
(x),
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where Kh ∗ K′h stands for the convolution product between two kernel functions. This auxiliary kernel

allows to compute the auxiliary gradient empirical risk Ĝh,h′(c), where K̃h,h′ is used in (3.30) instead of

K̃h. Then, the quantity B̂V(h) in (3.34) is defined as :

B̂V(h) := sup
h′∈Haniso

{
|Ĝh,h′ − Ĝh′ |2,∞ −Ml(h, h

′)
}

+M∞l (h), with M∞l (h) := sup
h′∈Haniso

Ml(h
′, h),

where |T |2,∞ := supθ |T (θ)|2 for any T : Rdk → Rdk whereasMl(h, h
′) is a majorant function according

to Definition 7. In our framework, it is defined in Lemma 8 for the mildly ill-posed case as :

Ml(h, h
′) = Caniso

√
kd

(
Πd
i=1h

−βi
i√
n

+
Πd
i=1(hi ∨ h′i)−βi√

n

)
,(3.35)

where Caniso > 0 is a positive constant. Note that in this experimental study, we also consider a Gaussian
distribution for the noise ε in (3.29). In this case, we choose a majorant function in B̂V(h) as a product
of exponentially decreasing functions of hi, i = 1 . . . , d instead of polynomial type as in Lemma 8. This
choice is originated in Comte and Lacour [2013] where a study of the standard GL method is suggested
in a deconvolution setting.

The computation of (3.34) requires many optimization steps. To overcome this computational issue,
in our simulations we use simultaneously packages doParallel and foreach to provide a parallel execution
of our R code on machines with multiples cores. The foreach package promotes a new looping construct
for executing R code repeadtly. It is similar to the standard lapply function, but does not require the
evaluation of a function. It facilitates the execution of the loop in parallel. The doParallel package
registers the parallel backend with the foreach package. In our simulation study, we use a machine with
64 cores to speed up the EGC minimization (3.34).

3.3.4 Experiments

We consider the experimental setting of Section 2.3.2 with j = 1, that is we restrict to the case k = 2
for simplicity. We generate an i.i.d. noisy sample Dn = {Z1, . . . , Zn} where :

Zi = Xi + εi(u), i = 1, . . . , n,(3.36)

where (Xi)
n
i=1 are i.i.d. with density f defined as :

f (1) = 1/2fN (02,I2) + 1/2fN ((5,0)T ,I2).

In this study, (εi(u))ni=1 are i.i.d. with Gaussian noise with zero mean (0, 0)T and covariance matrix

Σ(u) =

(
1 0
0 u

)
for u ∈ {1, . . . , 10}. In this setting, we propose to compare the performances of k-means

with Noisy k-means by computing the clusterring error (see (2.43)) and the quantization error (see
(2.44)).

For each criterion, we study the behaviour of the Lloyd algorithm (standard k-means) with two
different noisy k-means, corresponding to two different choice of bandwidths h, with ERC of Section
3.3.2 or EGC of Section 3.3.3. Thanks to the theoretical results, we know that each bandwidth selection
method depends on some constant. For ERC with ICI implementation, the constant Ciso > 0 appears in
(3.32) whereas for the gradient, Caniso > 0 is involved in (3.35). In the sequel, we illustrate the behaviour
of these methods with respect to the fluctuation of these constants.

Clustering risk Figure 3.2 (a)-(b) illustrates the evolution of the clustering risk (2.43) when u ∈
{1, . . . , 10} in the model for k-means and the two selection rules. For each rule, we bring into play three
different constants.
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(a) ERC method (b) Gradient method
Figure 3.2 : Clustering risk averaged over 100 replications with n = 200 for k-means against ICI (a)

and the gradient (b).

The performances of ERC method with ICI implementation depends strongly on the constant Ciso > 0
which appears in (3.32). A good calibration of this constant gives slightly better results than k-means
(Figure 3.2 (a)). In comparison, the noisy k-means algorithm with EGC method significantly outperforms
k-means or ERC (Figure 3.2 (b)). That highlights the importance in practice to choose two different
bandwidths in each direction in this model, i.e. an anisotropic bandwidth. Moreover, the calibration of
ERC is more difficult than EGC, which confirms the theoretical study of this chapter.

Quantization risk In Figure 3.3, we plot the quantization error of each procedure, when the variance
of the noise increases. As before, we employ different constants for each method.

(a) ERC method (b) Gradient method
Figure 3.3 : Quantization risk averaged over 100 replications with n = 200.

Adaptive Noisy k-means with ICI do not show a good accuracy in terms of quantization error whereas
EGC rule is better. It also shows one more time that quantization is harder than clustering.

3.3.5 Conclusion of the experimental study

This section investigates the bandwidth selection problem in noisy k-means. By using theoretical
results of Section 3.1 and Section 3.2, we present two data-driven bandwidth selection for both the
isotropic and anisotropic case. A first simulation study reveals a good behaviour of EGC in terms of
clustering. Many other problems could be adressed in the future. One can use these bandwidth selection
methods in other kernel empirical risk minimization problems, such as in image denoising or local fitted
likelihood. In particular, it could be a way of calibrating a local constant approximation method in image
denoising with non gaussian noise by using robust loss, such as the Huber loss.



From i.i.d. learning to online learning

Chapters 2-3 are an invitation to the statistical learning theory. By considering a contaminated
sample, we had the opportunity to (1) rewrite the theory of empirical process of van de Geer [2000]
(2) generalize the classical lower bounds of Mammen and Tsybakov [1999] and Audibert and Tsybakov
[2007] (3) introduce an alternative to localization into the statement of fast rates of convergence. Inverse
Statistical Learning generates a tedious problem of bandwidth selection that we solve with the inspiration
of Lepski’s contributions. To deal with the isotropic case, we compare empirical risks instead of estimators
and give adaptive fast rates for the excess risk. In the anisotropic case, Goldenshluger and Lepski’s
principle (see Goldenshluger and Lepski [2011]) is applied to the comparison of gradient empirical risks.
From the practical viewpoint, these considerations are illustrated in clustering. It gives one novel noisy
clustering algorithm called noisy k-means, and two novel bandwidth selection methods, called ERC
(Empirical Risk comparison) and EGC (Empirical Gradient Comparison).

As mentioned earlier in the dissertation, two paradigms are usually exposed in learning theory. In
the two previous chapters, we suppose we have at our disposal an i.i.d. sample of random variables. It
diriges the theoretical effort on uniform bounds for empirical processes, empirical risk minimizers, as well
as excess risk bounds. However, another popular depiction of a statistical problem could be investigated.
This is the purpose of Chapter 4, where online learning is studied. In this framework, the data arrives
sequentially without any probabilistic assumptions. It gives us a new and appealing source of theoretical
issues, in terms of algorithms, regret bounds, and adaptivity. This playground is investigated in the next
pages for the problem of clustering, where a theoretical study in this case is unusual.
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Chapitre 4

0nline learning with sparsity priors

We know that `0-penalized methods enjoy good theoretical properties but untractable computational
complexity. On the contrary, convex relaxations, such as the lasso, reach sparsity oracle inequalities under
rather restrictive assumptions.

To tackle this impasse, Dalalyan and Tsybakov [2012] come up with sparsity priors in a fairly general
set-up. To set this idea, let us consider an i.i.d. sample Dn = {(Xi, Yi), i = 1, . . . , n} with law Pf , where
the regression function f(·) = E(Y |X = ·) ∈ FΘ = {fθ, θ ∈ Θ}, for Θ ⊆ Rp with p possibly larger than
n. In this setting, PAC-Bayesian inequalities are affirmed on the following basis :

EDn‖f̂ − f‖2L2(PX) ≤ inf
ρ∈∆(Θ)

{
Eθ′∼ρ‖fθ′ − f‖2L2(PX) +

K(ρ, π)

λ(n+ 1)

}
,(4.1)

where ∆(Θ) is the set of probability distribution over Θ, K(·, ·) is the Kullback-Leibler divergence and
λ > 0 is an inverse temperature parameter. In the previous inequality, f̂ := Eθ∼ρ̂fθ where ρ̂ := ρ̂(Dn) is
a random measure based on a mirror averaging :

ρ̂(dθ) =
1

n+ 1

n∑
i=0

ρ̂i(dθ) where ρ̂i(dθ) =
e−λ

∑i
j=1(Yj−fθ(Xj))

2

Eθ′∼πe−λ
∑i
j=1(Yj−fθ′ (Xj))2

π(dθ).

Inequality (4.1) holds for any choice of prior π. Then, in order to reach sparsity oracle inequalities, the
following sparsity prior is introduced :

π(dθ) =

p∏
j=1

aτ
(
τ2 + θ2

j

)−2
dθj ,(4.2)

where aτ > 0 is a normalizing constant. Sparsity priors have been introduced in Bayesian estimation
by several authors (Johnstone and Silverman [2005], Rivoirard [2006], Seeger [2008]). The principle is to
employ heavy-tailed distribution, such as multivariate Laplace, quasi-Cauchy or Pareto priors. In this
PAC-Bayesian frawework, prior (4.2) guarantees sparsity oracle inequalities thanks to (4.1).

More recently, sparsity priors have been used in online learning. Given a deterministic sequence
(xt, yt), t = 1, . . . , T where xt ∈ Rd and yt ∈ R, a dictionary of base forecasters (ϕk)

p
k=1 defined in Rd,

Gerchinovitz [2013] produces a sequential algorithm satisfying a sparsity regret bound :

T∑
t=1

(ŷt, yt)
2 ≤ inf

θ∈Rp

{
T∑
t=1

(yt − fθ(xt))2 +
|θ|0
λ

log

(
1 +

|θ|1
|θ|0τ

)}
+ τ2BΦ,(4.3)

where BΦ > 0, |·|0 is the `0-norm in Rp and fθ(·) =
∑p

k=1 θkϕk(·). In (4.3), for each t ≥ 1, ŷt := Eρ̂tfθ(xt)
where :

ρ̂t(dθ) =
e−λ

∑t−1
j=1(yj−fθ(xj))

2

Eθ′∼πe−λ
∑t−1
j=1(yj−fθ′ (xj))2

π(dθ),(4.4)

with π a sparsity prior such as (4.2).
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Prediction with expert’s advices is the core of a huge amount of work these last decades in game
theory and statistics (see Cesa-Bianchi and Lugosi [2006] and the references therein). The problem
could be described as a sequential game between the nature and a forecaster. A blackbox - the nature
- reveals at each trial t a real value yt ∈ R. Then, the forecaster predicts the next value based on
the past observations and expert advices. These expert advices could be based on deterministic - or
stochastic - models, or even adversarial. The goal is to predict as well as the best expert, no matter
what sequence is produced by the blackbox. Very often, the introduced algorithms are based on convex
combinations of expert advices, where coefficients depend on the past performances of each expert as in
(4.4). In this respect, exponential weights are very often introduced. Applications of this online scenario
are ubiquitous : they include weather forecasting, finance, social sciences, time series, etc...

In this chapter, we turn out into an unsupervised counterpart ot this problem, where we want to
predict a multivariate individual sequence with no expert advices. In the context of clustering, we intent to
relax the assumptions on the data-generating mechanism introduced in statistical learning (see Chapter
2 and Chapter 3). We give algorithms with theoretical guarantees for the problem of online clustering
without any probabilistic hypothesis. The proposed algorithms are exponential weighting procedures
inspired from Dalalyan and Tsybakov [2012] and Gerchinovitz [2013]. In the first section of this chapter,
we state sparsity regret bounds for a fully automatic PAC-Bayesian sequential algorithm with sparsity
prior derived from (4.2). This methodology also offers surprising new insights into the classical i.i.d.
setting thanks to the now popular ”online to batch conversion”. We illustrate this technique in model
selection clustering as well as high dimensional clustering. Then, we extend this approach to the problem
of online bi-clustering. In this case, the problem of online clustering is a step into a high-level task of
online prediction as in Gerchinovitz [2013]. We establish sparsity regret bounds where the sparsity is
related with the structure of the data points. Eventually, we study the minimax regret for these problems
and offer lower bounds under a sparsity scenario. Lower bounds are derived from a simple probabilistic
reduction scheme as in Haussler, Kivinen, and Warmuth [1998]. Surprisingly, these bounds match - at
least asymptotically - with upper bounds under the worst case scenario.

4.1 Online clustering of individual sequences [L9]

4.1.1 Introduction

In this section, we construct online clustering algorithms which learn according to the following
protocol. On each day t, the forecaster must predict the next instance xt ∈ Rd with at most p ≥ 1
possible ”proposals” or ”strategies”. On the morning of day t, he has access to the inputs x1, . . . , xt−1

of the previous days. Based on these instances, he must propose a codebook of p ≥ 1 strategies ĉt =
(ĉt,1, . . . , ĉt,p) ∈ Rdp. At the end of the day, he receives xt and incurs a loss - or distortion - `(ĉt, xt),
where :

`(ĉt, xt) = min
j=1,...,p

|ĉt,j − xt|22,

and | · |2 stands for the Euclidean norm in Rd. The goal of the forecaster is to control the cumulative
distortion

∑T
t=1 `(ĉt, xt), with |ĉt|0 as small as possible, where |ĉt|0 corresponds to the number of non-zero

strategies at time t, i.e. :

|c|0 := card{j = 1, . . . , p : cj 6= (0, . . . , 0)> ∈ Rd}, ∀c = (c1, . . . , cp) ∈ Rdp.(4.5)

Before all else, let us describe a tedious candidate strategy. At each trial t ≥ 1, the forecaster deposits
a proposal on each past instance x1, . . . , xt ∈ Rd and let the other components to zero. This tiresome
system will satisfy |ĉt|0 = t, for any t ≥ 1. Consequently, the strategy will induce small cumulative
loss

∑T
t=1 `(ĉt, xt) but huge complexity, and is equivalent to the so-called ”overfitting phenomenon”. In

this contribution, we want to develop algorithms which summarize the information of the deterministic
sequence, namely such that |ĉt|0 << t.
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A motivating example 1 is as follows. A t-shirt sailer receives online data about their sales, custo-
mer after customer (such as prize, color and shape). After each checkout process t, he must predict the
next instance in order to market appropriately to the current customer’s patterns. Since different social
clusters are involved (such as boys, teens, or gothics), he can advise different strategies or attempts. His
own limitation is to come up with a finite - and as small as possible - number of strategies in order to
summarize the demand (he has not access to an infinite store size). Additionally, since fashion changes
over time, the retailer wants to learn in an online way.

In this chapter, we make no assumption about the data generating mechanism. Our results hold for a
worst case sequence of instances. It allows to tackle non stationarity in the learning process and predict
- or cluster - sequences of points with time-varying structure. This problem has been, as far as we know,
very poorly treated in the literature. In the framework of expert advice, we can mention Choromanska
and Monteleoni [2012], where different clustering algorithms are aggregated at each trial to get an online
clustering algorithm. Zong [2005] investigates an online version of the spherical k-means algorithm. In
the present dissertation we have not any expert advice (such as k-means). In particular, we have no idea
about the number of clusters to use in the learning protocol.

From a theoretical viewpoint, we are interested in sparsity regret bounds introduced in (4.3). More
precisely, we recommend to control the cumulative loss according to :

T∑
t=1

`(ĉt, xt) ≤ inf
c∈Rdp

{
T∑
t=1

`(c, xt) + λ|c|0

}
+ rλ(T ),(4.6)

where | · |0 is defined in (4.5), rλ(T ) is a residual term and λ > 0 is a temperature parameter. It has
to be calibrated in order to minimize the right hand side of (4.6). In other words, we want to control
the regret of our sequential procedure to have not reached the compromise between fitting the data and
compress the information (i.e. the infimum which appears in the right hand side). Going back to the
t-shirt retailer example, it means that we are looking at a strategy that fits the customer’s patterns as
well as possible, but also which minimizes the number of offers. This compromise is of first interest in
information theory and statistics.

Our algorithms are based on standard sequential randomized procedures introduced above (see also
Audibert [2009]). In Dalalyan and Tsybakov [2012], it is noted that these methods are computationally
feasible for relatively large dimensions of the problems, by using a so-called Langevin Monte-Carlo
method. These computational aspects have been also considered in Alquier and Biau [2013] in a sparse
single index model and in Alquier and Guedj [2013] in a sparse additive model. This direction is of first
interest in clustering.

In this section, we present the sequential randomized algorithm and give the first sparsity regret
bounds as in (4.6) for the problem of online clustering with known horizon T . The problem of adaptation,
namely the knowledge of T , is also studied and we give a fully automatic online algorithm where the
temperature parameter λ > 0 and the prior scale τ > 0 are calibrated automatically. Eventually, thanks
to the well-known online-to-batch conversion, we illustrate the power of the PAC-Bayesian theory in the
standard i.i.d. case. Using a slightly modified sequential algorithm, we perform model selection clustering
as well as high dimensional clustering.

4.1.2 The algorithm of online clustering

For any integer d, p ≥ 1, we denote by ∆(Rdp) the set of probability measure on Rdp. Let us introduce
a prior π ∈ ∆(Rdp) and an inverse temperature parameter λ > 0. At the beginning of the game, we
draw ĉ1 with law p̂1 := π. We fix S0 ≡ 0. Then, learning proceeds as the following sequence of trials
t = 1, . . . , T − 1 :

1. Get xt and compute St(c) = St−1(c) + `(c, xt) + λ
2 [`(c, xt)− `(ĉt, xt)]2, ∀c ∈ Rdp.

2. Let p̂t+1(dc) := e−λSt(c)

Wt
π(dc) ∈ ∆(Rdp), where Wt = Ec∼πe

−λSt(c).

1. This toy example was found in the MIT Opencourseware. Recently, I visited a company and concluded a CIFRE with
a very closely related problem of e-commerce website.
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3. Draw ĉt+1 according to the law p̂t+1.

W have constructed a vector of probability measures (p̂1, . . . , p̂T ), where each p̂t ∈ ∆(Rdp) is calculated
thanks to the sequence of past instances x1, . . . , xt−1 and the realizations of (ĉ1, . . . , ĉt−1). More precisely,
the principle is to update the current error of any codebook c ∈ Rdp as follows :

St(c) = St−1(c) + `(c, xt) +
λ

2
[`(c, xt)− `(ĉt, xt)]2,(4.7)

where λ > 0 is some temperature parameter. At each trial t, the loss of a codebook is decomposed as
the loss over the past, the current loss `(c, xt) and a stability term that ensures ĉt+1 to be not so far
from ĉt. This term can be viewed as a penalization term to better control the variance in our procedure
(see Audibert [2009] for details and inequality (4.10) below). Due to the construction of a randomized
estimator ĉ, we are interested in the cumulative expected loss, given by :

ET (ĉ) :=

T∑
t=1

E(p̂1,...,p̂t)`(ĉt, xt),(4.8)

where for each t ≥ 1, the product measure (p̂1, . . . , p̂t) is constructed in the algorithm.

PAC-Bayesian bounds go back to the work of Mac Allester [1998] (see also Catoni [2001] or more
recently Seeger [2008]). It gives a control in expectation of the risk of any randomized estimator. The
precise expression of the upper bounds depends on the context, but it is very often an empirical risk
penalized in terms of Kullback-Leibler divergence. A nice property is the following duality formula. For
any measurable function h : Rdp → R, we have :

logEc∼πe
h(c) = sup

ρ∈∆(Rdp)

{Ec∼ρh(c)−K(ρ, π)} .(4.9)

Since the earlier work of Mac Allester, many authors have investigated PAC-Bayesian bounds. For our
purpose, we can mention Audibert [2009], which has largely inspired the result of Proposition 1 below.
In particular, the construction of the algorithm - and more precisely the update of the current error
described in (4.23) - warrants :

∀λ > 0, ∀t ≥ 1, E(p̂1,...,p̂t)`(ĉt, xt) ≤ −
1

λ
E(p̂1,...,p̂t) logEc∼ρe

−λ(St(c)−St−1(c)).(4.10)

Assertion (4.10) emanates from Audibert [2009] in a quite general setting as a variance inequality. This
kind of inequality can be traced back to Haussler, Kivinen, and Warmuth [1998] (see also Juditsky,
Rigollet, and Tsybakov [2008] in the i.i.d. setting). In our framework, it is the starting point to get the
following result :

Proposition 1. For any deterministic sequence (xt)
T
t=1 ∈ RdT , for any p ∈ N?, any λ > 0 and any prior

π ∈M+(Rdp), the cumulative loss (4.8) satisfies :

ET (ĉ) ≤ inf
ρ∈∆(Rdp)

{
Ec∼ρ

T∑
t=1

`(c, xt) +
K(ρ, π)

λ
+
λ

2
E(p̂1,...,p̂T )Ec∼ρ

T∑
t=1

[`(c, xt)− `(ĉt, xt)]2
}
.(4.11)

The bound of Proposition 1 gives a control of the expected cumulative loss of the randomized pro-
cedure. It holds for any choice of prior π, as well as any inverse temperature parameter λ > 0. In the
sequel, we choose a group-sparsity prior to give a sparsity regret bound for our problem.

Proof: Applying (4.10) for any t and summing over t, we can prove easily :

ET (ĉ) ≤ − 1

λ

T∑
t=1

E(p̂1,...,p̂t) logEc∼p̂te
−λ[St(c)−St−1(c)] =: ζT

We are now on time to bring into play the chain rule (see Barron [1987]) to get :

ζT = − 1

λ
E(p̂1,...,p̂T ) log

T∏
t=1

(
Wt

Wt−1

)
= − 1

λ
E(p̂1,...,p̂T ) log (WT ) .

The Kullback duality formula (4.9) applied with h(·) = −λST (·) concludes the proof.
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4.1.3 Sparsity regret bounds

Group-sparsity encourages occurences of whole blocks of zeros in a decision vector (see Yuan and
Lin [2007]). It has been used in many applications, such as genetics or image annotation (see Zhang,
Huang, Huang, Yu, Li, and Metaxas [2010]), where the lasso is not consistent for variable selection in
high correlation settings. In this chapter, we are looking at a vector c = (c1, . . . , cp) ∈ Rdp such that
|c|0 := card{j = 1, . . . , p : cj 6= (0, . . . , 0)>} is small, namely a so-called group-sparsity. To deal with such
a property, we introduce a new kind of prior. It consists of a product of multivariate Student’s distribution√

2τTd(3), where τ > 0 is a scaling parameter and Td(3) is the d-multivariate Student with three degrees
of freedom. It can be viewed as a generalization of the prior in (4.2) where a product of univariate
Student is considered. Consequently, we use a multivariate Student’s distribution defined in Kotz and
Nadarajah [2004], defined as the ratio between a gaussian vector and the square root of an independent
χ2 distribution with 3 degrees of freedom. In our case, it leads to the following representation :

πS(dc) :=

p∏
j=1

{
a−1
R,τ

(
1 +
|cj |22
6τ2

)− 3+d
2

1(|cj |2 ≤ 2R)

}
dc,(4.12)

where aR,τ := bd,τP(
√

2τ |Td(3)|2 ≤ 2R) for some constant bd,τ > 0. Here, R > 0 is a threshold that
could be chosen arbitrarily big. Roughly speaking, the scaling parameter τ > 0 - which can be fixed to
a really small parameter - ensures sparsity for the vector of p groups

√
2τTd(3) whereas the heavy tails

property of Td(3) guarantees that a small proportion of groups are quite far from zero. From a theoretical
viewpoint, the introduction of the group-sparsity prior (4.12) gives rise to the following lemma :

Lemma 10. Let p ∈ N∗, τ,R > 0 and πS defined in (4.12). Let c = (c1, . . . , cp) ∈ Bp(R) where
Bp(R) = {c = (c1, . . . , cp) : ∀j = 1, . . . , p, |cj |2 ≤ R}. Introduce p0 the following translated version of πS
with mean c :

p0(dc′) =

p∏
j=1

a′−1
R,τ

(
1 +
|c′j − cj |22

6τ2

)− 3+d
2

1(|c′j − cj |2 ≤ R)

 dc′,

where here a′R,τ := bd,τP(
√

2τ |Td(3)|2 ≤ R). Then p0 << πS and we have :

K(p0, πS) ≤ (3 + d)|c|0 log

(
1 +

∑p
j=1 |cj |2√
6τ |c|0

)
+

12pdτ2

R2
.

The proof of the lemma is based on Dalalyan and Tsybakov [2012] and the properties of the multi-
variate Student’s distribution (see Kotz and Nadarajah [2004]).

Theorem 15. For any deterministic sequence (xt)
T
t=1, any R > 0, let us consider the online algorithm

with λ =
√

(3 + d)/T using prior πS defined in (4.12) with τ2 ≤ (1/p) ∧ (1/
√
T ). Then :

ET (ĉ) ≤ inf
c∈Bp(R)

{
T∑
t=1

`(c, xt) + |c|0
√
T (3 + d) log

(
1 +

√
T
∑p

j=1 |cj |2√
6|c|0

)}

+
√
T

(
12d

R2
√

3 + d
+ 8C2R2

√
3 + d+ 6d

)
.

The choice of (τ, λ) above gives rise to a sparsity regret bound with rate O(
√
T log T ). The RHS of

this regret bound does not depend on p, provided that τ > 0 is chosen adequately. If we suppose the
existence of a minimizer c? of the RHS of Theorem 15 such that |c?|0 = s for some sparsity index s ∈ N∗,
we have, for T large enough :

ET (ĉ)− ET (c?) ≤ const.× s
√
T log T.

Section 4.3 studies the optimality of this bound in a minimax sense.
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From the adaptive point of view, the choice of the couple (λ, τ) depends explicitly on the horizon T ,
which is not known in a pure online setting. This problem is considered in Section 4.1.4 where a fully
automatic version of the algorithm of Section 4.1.2 is given.

A tuning of R, as well as a more involved choice of λ, τ > 0 are conceivable. It is likely to let λ, τ > 0
depend on BT = maxt=1,...,T |xt|2 and R > 0 to get better constants in Theorem 15. More precisely, for
λ =

√
(3 + d)/(8T )(2BT + 3R)−1, we get a better residual term in the sparsity regret bound. However,

this choice of λ entails a more difficult automatic choice since as in Gerchinovitz [2013], the parameter
BT has to be calibrated at each iteration in this case.

Eventually, the infimum in Theorem 15 is restricted to {c : ∀j, |cj |2 ≤ R}. This arises for technicalities
in the proof and could be extended to the whole space Rdp in the spirit of Gerchinovitz [2013].

4.1.4 Adaptation

The choice of the tuning parameters λ, τ > 0 in Theorem 15 depends explicitly on the horizon T of
the deterministic sequence. However, if we consider a pure online setting, the size of the deterministic
sequence is unknown. This problem is called adaptation in the deterministic literature and has been
extensively studied in the context of prediction with expert advices (see Auer, Cesa-Bianci, and Gentile
[2002], Cesa-Bianchi, Mansour, and Stoltz [2007], Gerchinovitz [2013]). Originally, one can use a doubling
trick, which consists in restarting the algorithm at periods of exponentially increasing lengths of size 2k,
for k ≥ 1. A more natural alternative is to let the tuning parameters depend on the trial t ≥ 1. The
idea has been introduced in Auer, Cesa-Bianci, and Gentile [2002] and influences the regret bounds by
only a constant factor. These approaches are developed below for tuning both parameters λ and τ in the
algorithm.

Adaptive temperature algorithm

Let us consider a prior π ∈ ∆(Rdp) and a non-increasing sequence of positive temperature parameter
(λt)

T
t=1. At the beginning of the game, we draw ĉ1 with law p̂1 := π. We fix S0 ≡ 0. Then, learning

proceeds as the following sequence of trials t ∈ {1, . . . , T − 1} :

1. Get xt and compute : St(c) = St−1(c) + `(c, xt) + λt
2 [`(c, xt)− `(ĉt, xt)]2, ∀c ∈ Rdp.

2. Let p̂t+1(dc) := e−λt+1St(c)

Wt
π(dc) where Wt = Ec∼πe

−λt+1St(c).

3. Draw ĉt+1 according to the law p̂t+1.

The submitted algorithm is denoted as ĉτ . It depends on a sequence of non-increasing temperature
parameters (λt)

T
t=1. By choosing λt =

√
(3 + d)/t, we arrive at the following adaptive regret bound.

Theorem 16. For any deterministic sequence (xt)
T
t=1, any τ,R > 0, let us consider the adaptive algo-

rithm ĉτ with λt =
√

(3 + d)/t and prior πS defined in (4.12). Then :

ET (ĉτ ) ≤ inf
c∈Bp(R)

{
T∑
t=1

`(c, xt) +
√

3 + d|c|0
√
T log

(
1 +

∑p
j=1 |cj |2√
6|c|0τ

)}

+ 16C2R2
√
T (3 + d) +

12pdτ2

R2
√

3 + d

√
T + 6dτ2T.

This result gives a sparsity regret bound when λ varies over time in the sequential procedure. Mo-
reover, if we choose p ≥

√
T and a scale parameter τ ≤ p−1/2, we arrive at :

ET (ĉτ ) ≤ inf
c∈Bp(R)

{
T∑
t=1

`(c, xt) + (3 + d)|c|0
√
T log

(
1 +

√
p
∑p

j=1 |cj |2√
6|c|0

)}

+
√
T

(
16C2R2 +

12d

R2
√

3 + d
+ 6d

)
.(4.13)

However, these choices of (p, τ) are not possible in the adaptive setting of unknown horizon T . Note
that this problem also occurs in Gerchinovitz [2013], where a doubling trick is performed to get a fully
automatic algorithm. Last paragraph follows the same lines and suggests a fully automatic procedure of
online clustering.
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A fully automatic online clustering algorithm

The idea is to decompose the sequence of outcomes (xt)t≥1 into sequences of exponentially increasing
length as follows. Let t0 = 0 and introduce, for any r ∈ N∗, an integer tr defined as :

tr = min{t ≥ tr−1 + 1 : log(1 +
√
t) > 2r}.

Let τ(r) = (e2r − 1)−1. Then, we construct the sequence of posterior distributions as follows : for any
r ∈ N∗, build from the sequence (xtr−1 , . . . , xtr−1) the vector of posterior (p̂r,tr−1 , . . . p̂r,tr−1) with the
adaptive temperature algorithm with τ := τ(r) and p = tr−tr−1. The associated sequence of randomized
estimators is denoted as (ĉt,∗)t≥1, where :

∀r = 1, . . . ∀t ∈ {tr−1 + 1, . . . , tr}, ĉt,∗ ∼ p̂r,t.

For any T ≥ 1, for any sequence (xt)
T
t=1, we hence have constructed a randomized sequence ĉ∗ = (ĉt,∗)

T
t=1

which does not depend on horizon T .

Theorem 17. For any T ≥ 1, for any deterministic sequence (xt)
T
t=1, any R > 0, let us consider the

adaptive algorithm ĉ∗ = (ĉt,∗)
T
t=1 defined above. Then :

ET (ĉ∗) ≤ inf
c∈Bp(R)

{
T∑
t=1

`(c, xt) + |c|0
√
T (3 + d) log

(
1 +

∑p
j=1 |cj |2√
6|c|0τ

)}
+ c
√
T log log(1 +

√
T ).

Proof: The poof is based on the decomposition of the cumulative expected distortion in each period
r ∈ {1, . . . , R} as follows :

T∑
t=1

E(p̂1,...,p̂t)`(ĉt, xt) =
R∑
r=1

tr∑
t=tr−1+1

E(p̂tr−1+1,...,p̂t)`(ĉt, xt),(4.14)

where tR = min{t ∈ (tr)r≥1 : t > T}. Then we can apply Theorem 16 with τ = τ(r), p = tr − tr−1 to get
the result.

4.1.5 Batch revisited

In this section, we go back to the vanilla clustering of an i.i.d. sample. Given an integer k ≥ 1 and a
probability P over Rd, we write here :

Wk(c) = EP min
j=1,...,k

|X − cj |22, ∀c ∈ Rdk.

In this setting, based on an i.i.d. sample X1, . . . , Xn, we introduce :

Ŵk(c) =
1

n

n∑
i=1

min
j=1,...,k

|Xi − cj |22, ∀c ∈ Rdk.(4.15)

Standard algorithms, such as the Lloyd algorithm, are made of Newton’s type iterations and depend
strongly on the initialization step. Moreover, the knowledge of k is not always guaranteed and a data-
driven choice of this parameter remains a hard issue. In this paragraph, we suggest to use the PAC-
Bayesian framework to get a fully automatic algorithm that performs model selection clustering. Even-
tually, for completeness, we also deal with the problem of high dimensional clustering. In this case, the
number of clusters k is known but the dimension d of the variable X could be much larger than the
sample size n.
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Model selection clustering

Recently, Fischer [2011] formulates the problem of selecting the number of clusters k as a problem of
model selection. She gives standard-style statistical learning bounds by using empirical process theory.
For any integer k ≥ 1, let us denote ĉk the minimizer of (4.15). Given the family {ĉk, k = 1, . . . , n},
Fischer [2011] suggests a penalized model selection procedure to choose k as follows :

k̂ = arg min
k=1,...,n

{
Ŵk(ĉk) + pend(k)

}
,

where pend(k) is an increasing function of the dimension kd. In practice, the choice of the penalty is
made of two steps :

1. A theoretical study gives the shape of the penalty, namely here (see Fischer [2011]) :

pend(k) = 2

√
kd

n
, for some 2 > 0.

2. Then, the constant 2 > 0 in front of the penalty’s shape can be calibrated thanks to the slope
heuristic (see Baudry, Maugis, and Michel [2012]).

In this paragraph, we develop the PAC-Bayesian analysis for this problem. Let us introduce an
integer p ≥ 1, which could be large enough (we can choose p = n to fix the ideas). Consider the prior
πS ∈ ∆(Rdp) defined according to (4.12) :

πS(dc) :=

p∏
j=1

{
a−1
R,τ

(
1 +
|cj |22
6τ2

)− 3+d
2

1(|cj |2 ≤ 2R)

}
dc.

Fix S0 ≡ 0 and draw ĉ1 according to π. Then, for any i ∈ {1, . . . , n} :

1. Get Xi and compute : Si(c) = Si−1(c) + `(c, Xi) + λ
2 [`(c, Xi)− `(ĉi, Xi)]

2, ∀c ∈ Rdp.

2. Let p̂i+1(dc) := e−λSi(c)

Wi
π(dc) ∈ ∆(Rdp) where Wi = Ec∼πe

−λSi(c).

3. Draw ĉi+1 according to p̂i+1.

The final estimator in the i.i.d. case, denoted as ĉMA, is a realization of the uniform law over {ĉ1, . . . , ĉn+1} :

(4.16) ĉMA ∼ µ̂ := U({ĉ1, . . . , ĉn+1}),

where µ̂ is the uniform law over the set of estimators {ĉ1, . . . , ĉn+1}, conditionally to the training set
Dn. This additional step is called Mirror Averaging (MA) and has been used in the i.i.d. setting by
many authors (see for instance Juditsky, Rigollet, and Tsybakov [2008], Dalalyan and Tsybakov [2012],
Audibert [2009]). Since ĉMA is a realization of an uniform law, we are finally interested in the expectation
(with respect to the training set Dn) of the expected risk of ĉMA, given by :

EDnEc′∼µ̂W(c′) =
1

n+ 1

n+1∑
i=1

EDiE(p̂1,...,p̂i)W(ĉi) where W(c) = EP min
c∈c
|X − c|22.

Theorem 18. Suppose the distribution P satisfies P (|X|2 ≤ B) = 1 for some B > 0. Let us consider the
mirror averaging ĉMA defined in (4.16) using parameters R > 0, p = n and prior πS defined in (4.12).
If we choose (τ, λ) =

(
n−1/2, n−1/2

)
, the following holds :

EDnEc′∼µ̂W(c′) ≤ inf
1≤k≤n

{
W(c?k) +

(3 + d)k√
n

log

(
1 +

√
n
∑n

j=1 |cj |2√
6k

)}

+ n−1/2

(
12d

R2
+ 8C2R2

)
+

6d

n
,

where c?k = arg minc∈Bp(R):|c|0=kW(c).

The RHS of Theorem 18 can be compared with Fischer [2011], where the penalized model selection
procedure described above is used. The inequality of Theorem 18 makes sure that in the i.i.d. case, the
risk of our procedure is comparable to the best codebook in the family, up to a residual term. This term
approaches the rate n−1/2, up to a log n factor. From a model selection point of view, if we compare this
result with Fischer [2011], the main advantage of our approach is that there is not any tuning parameter
to choose.
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High dimensional clustering

In this paragraph, we turn out into the problem of high dimensional clustering (see Bouveyron and
Brunet [2013], Parsons, Haque, and Liu [2004]). Given an integer k ≥ 1, we consider an i.i.d. sample
X1, . . . , Xn with unknown law P over Rd, where d could be much larger than n. We are interested in a
codebook c = (c1, . . . , ck) such that |cj |0 << d for any j = 1, . . . , k, where here, | · |0 stands for the usual
`0-norm (i.e. the number of non-zero components in cj). The main result of this paragraph is a sparsity
oracle inequality for the mirror averaging estimator defined in (4.16) with a slightly different prior. In
this setting of high dimensional clustering, we introduce the following sparsity prior :

π′S(dc) :=

d∏
i=1

{
a−1
R,τ

(
1 +
|ci|22
6τ2

)− 3+k
2

1(|ci|2 ≤ 2R)

}
dc,(4.17)

where ci = (ci1, . . . , cik) ∈ Rk denotes the vector of the ith coordinates of each cj in c = (c1, . . . , ck), and
aR,τ := bk,τP(

√
2τ |Tk(3)|2 ≤ 2R) for some constant bk,τ > 0. Let us briefly explain the introduction of

this modified prior. Since we are looking at sparsity with respect to the dimension of the problem, we
construct a product of d multivariate Tk(3) Student’s distribution, where k ≥ 1 is the known number
of clusters in the problem. This choice mimics the introduction of πS above. It encourages codebook c
with small sparsity index |c|′0 defined as

|c|′0 = card{i = 1, . . . , d : (ci1, . . . , cik) 6= 0Rk}.

Theorem 19. Suppose distribution P satisfies P (|X|2 ≤ B) = 1. For some integer k ≥ 1, let us consider
the mirror averaging ĉMA defined in (4.16) using prior π′S defined in (4.17) with parameters R > 0. If
we choose : (τ, λ) =

(
d−1/2, n−1/2

)
, the following holds :

EDnEc′∼µ̂R(c′) ≤ inf
c∈Bd(R)

{
W(c) +

(3 + k)|c|′0√
n

log

(
1 +

√
d
∑d

i=1 |ci|2
|c|′0

)}

+ n−1/2

(
12k

R2
+ 8C2R2

)
+

6k

d
.

where |c|′0 = card{i = 1, . . . , d : (ci1, . . . , cik) 6= 0Rk} is the sparsity index of the codebook c.

The RHS of Theorem 19 gives a rate of convergence of the form log d/
√
n. The presence of a non-

convex loss function gives rise to a rate of order O(n−1/2), up to a classical log d term.

4.2 Online bi-clustering with sparsity priors [L11]

Supervised classification is widely used for solving many real-world problems such as spam filtering
or medical diagonostic (see Chapter 5). The main reason is the following : it can be easily expressed
as a well-defined problem with a loss function. This loss function, chosen by the scientist, makes the
problem clearly defined. On the other side, clustering is ”unsupervised” classification, that is to assign
classes that are not defined a priori. The goal is to learn the underlying structure of a dataset. This
unsupervised problem remains a hard issue since this representation is not necessarily unique. Even
worst, a huge number of different structures may coexist in any non-trivial set of data. In von Luxburg,
Williamson, and Guyon [2009], two distinct purposes for clustering are expressed : data pre-processing
where clustering is considered as a step in a whole data processing chain and exploratory data analysis
to discover a new structure in a dataset. Earlier in the dissertation, exploratory data clustering was
initiated in statistical and online learning. Clustering was carried out with the k-means loss function as
a quantization problem : how to summarize a distribution P in terms of Euclidean distance ? In this
section, a contrario, data pre-processing clustering is studied where the clustering task is an abstraction
of the ultimate end-use problem.
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4.2.1 Introduction

Bi-clustering or co-clustering is a popular method to analyse huge data matrices and build recommen-
der systems. In this field, we mainly observe a random matrix, where rows correspond to a population
and columns to variables (or products). This matrix is usually sparse, i.e. with many hidden entries (such
as ratings). The goal is to reconstruct the matrix by clustering simultaneously the rows and colums of
the matrix. This scenario has been applied to many real-world problems such as text mining (see Slonim
and Tishby [2000]), gene expression (Cheng and Church [2000]), social networks (see Gnatyshak, Igna-
tov, Semenov, and Poelmans [2012]) or collaborative filtering (see Seldin [2009]). In Seldin and Tishby
[2010], generalization bounds in terms of Kullback-Leibler divergence are proposed for this problem.
Assuming the existence of a probabilistic distribution p(x1, x2, y) over the triplet of rows, colums and
rating, a discriminative predictor q(y|x1, x2) is constructed via a PAC-Bayesian approach. The matrix
is supposed to have i.i.d. entries and the number of clusters is known in advance. In this section, we
want to investigate a deterministic and sequential version of the bi-clustering problem. As before, we
are interested in sparsity regret bounds, where the sparsity is associated with the structure of the data
points.

We consider an individual sequence (xt, yt), t = 1, . . . , T where T is the known horizon whereas for
any t = 1, . . . , T :

— the input variable xt = (xt,1, . . . , xt,d) ∈ X1 × . . .×Xd =: X ,
— the output 2 yt ∈ Y ⊆ [0,M ].

A seminal example is the construction of recommender systems. In this case, d = 2 and xt = (xt,1, xt,2)
corresponds to a couple customer×movie whereas yt is the associated rating (such as {?, ??, ? ? ?} for
instance). Note also that our analysis is not limited to the bi-clustering problem where d = 2 above,
since we can consider d > 2 tensors as well. At each time t, an input xt ∈ X is observed and we design a
prediction ŷt. Then, yt is given and we loss `(ŷt, yt) = (yt− ŷt)2 for simplicity. This particular loss enjoys
the useful property to be λ-exp-concave, which means that ŷ 7→ e−λ`(ŷ,y) is concave. Unlike the previous
pure unsupervised study, it allows to reach fast regret bounds (see also the discussion in Chapter 1).
With this loss function, we mix decision functions according to :

ŷt = E~c∼p̂tg~c(xt).(4.18)

In (4.18), decision functions g~c(·) depend on a set of d-tensor codebooks ~c = (c1, . . . , cd) ∈
∏d
j=1X

pj
j . A

d-tensor codebook assigns to each component xj of x ∈ X the nearest center of cj := (cj,1, . . . , cj,pj ) for
a given pj ∈ N∗. The associated d-tensor Voronöı cell is denoted as V~c(x) and corresponds to the product
of each Voronöı cell Vcj (xj) = {zj ∈ Xj : arg minij=1,...,pj |zj − cj,ij |2 = arg minij=1,...,pj |xj − cj,ij |2}. In
what follows (see for instance Theorem 20), we consider two different mappings ~c 7→ g~c(·). The first one
consists in computing the mean value of the sequence of past outputs in a given Voronöı cell. In this
case, g~c(xt) is literally defined for any t as :

gmean
~c (xt) =

∑t−1
u=1 yu1xu∈V~c(xt)

card {{x1, . . . , xt−1} ∩ V~c(xt)}
.(4.19)

In (4.19), we can initialize gmean
~c (x1) = M/2 without loss of generality. In (4.19) (and also in (4.20)),

g~c(xt) depends on the past observations (x1, y1), . . . , (xt−1, yt−1). We omit this dependence for simplicity.
Furthermore, when Y = {1, . . . ,M}, we can also use a majority vote for g~c(xt), where the majority vote
at time t is taken in the Voronöı cell V~c(xt) as follows :

gvote
~c (xt) = arg max

k∈Y
card{u = 1, . . . , t− 1 : yu = k and xu ∈ V~c(xt)}.(4.20)

Equipped with these decision functions, we want to promote a sparse representation. Here, the spar-
sity is associated with the set of d-tensor codebooks. Given some vector of integers m = (m1, . . . ,mp) ∈
Np, we restrict the study to the Euclidean space by considering Xj = Rmj for any j = 1, . . . , p, X =

2. In the sequel, two cases are considered : Y = [0,M ] (online regression) and Y = {1, . . . ,M} (online classification).
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R
∑d
j=1mjpj and ~c = (c1, . . . , cd) ∈

∏d
j=1 Rmjpj . Then, we wish that yt ≈ g~c?(xt), where ~c? = (c?1, . . . , c

?
d)

is such that c?j has a small `0-norm for any j = 1, . . . , d where |c?j |0 is defined as :

|c?j |0 = card{ij = 1, . . . , pj : c?j,ij 6= (0, . . . , 0)> ∈ Rmj}.(4.21)

Consequently, we are looking for d distincts group-sparse codebooks c1, . . . , cd. For this purpose, we will
use in our algorithm a product of d group-sparsity priors introduced in Lemma 10 in online clustering.
This prior is defined in Lemma 11 below.

As mentioned in the introduction, a comparable approach could be seen in Seldin and Tishby [2010]
in a classical statistical learning context. By considering a random generator P with unknown probabi-
lity distribution on the set X × Y, Seldin and Tishby [2010] suggest to consider the following form of
discriminative predictors :

h(y|x1, . . . , xd) =
∑

(i1,...,id)

h(y|i1, . . . , id)Πd
j=1h(ij |xj).

In this stochastic setting, the hidden variables (i1, . . . , id) represent the clustering of the input X =
(X1, . . . , Xd). Using a PAC-Bayesian analysis and bounds as in Mac Allester [1998], generalization errors
in terms of Kullback-Leibler divergence are proposed. The randomized strategy is based on a density
estimation of the law P , where the number of groups for each ij , j = 1, . . . , d is known.

In this section, the framework is essentially different since we propose to use the results of Section
4.1 in order to get sparsity regret bounds according to :

T∑
t=1

(yt − ŷt)2 ≤ inf
~c∈Πdj=1R

mjpj

{
T∑
t=1

(yt − g~c(xt))
2 + pen0(~c)

}
,(4.22)

where pen0(~c) is a penalty function which is proportional to the sum of the `0-norm (4.21) of the
codebooks c1, . . . , cd. The infimum in the RHS of (4.22) could be seen as a compromise between fitting
the data and structural complexity, where the complexity is related to the number of clusters in each
subspace Xj , j = 1, . . . , d. In recommender systems, it means that we can propose a simple representation
of ratings with a block matrix with a few number of blocks. Note that this fact is strongly related with
the usual sparsity assumption in low rank matrix completion (see for instance Candès and Recht [2009],
Koltchinskii, Lounici, and Tsybakov [2011]).

4.2.2 General algorithm and associated PAC-Bayesian inequality

Before to describe the algorithm, let us introduce some notations. We denote by C := Πd
j=1Rmjpj

the space of d-tensor codebooks, whereas a decision function at time t is denoted as g~c(·) (see (4.19) or
(4.20) for instance). We introduce a prior π ∈ ∆(C), where ∆(C) is the set of probability measure on
C, and a temperature parameter λ > 0. We can now describe the general algorithm and its associated
PAC-Bayesian inequality.

The principle of the algorithm is to predict yt according to a mixture of decision functions g~c, where
the mixture is updated by giving the best prediction of yt at each iteration. At the beginning of the
game, p̂1 := π. We observe x1 and predict according to ŷ1 := E~c∼p̂1g~c(x1), where g~c(x1) is defined above.
Then, learning proceeds as the following sequence of trials t = 1, . . . , T − 1 :

1. Get yt and compute :

p̂t+1(d~c) =
e−λ

∑t
u=1(yu−g~c(xu))2

Wt
dπ(~c),(4.23)

where Wt := Eπe−λ
∑t
u=1(yu−g~c(xu))2 is the normalizing constant.

2. Get xt+1 and predict ŷt+1 := E~c∼p̂t+1
g~c(xt+1).

Then, we have constructed a sequence of prediction (ŷt)t=1,...,T which satisfies the following PAC-Bayesian
bound.
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Proposition 2. For any deterministic sequence (xt, yt)
T
t=1, for any p ∈ Nd, any λ ≤ 1/2M2 and any

prior π ∈ ∆(C), one has :

T∑
t=1

(yt − ŷt)2 ≤ inf
ρ∈∆(C)

{
E~c∼ρ

T∑
t=1

(yt − g~c(xt))2 +
K(ρ, π)

λ

}
,(4.24)

where g~c(·) satisfies (4.19) or (4.20) whereas K(ρ, π) denotes the Kullback-Leibler divergence between ρ
and the prior π.

The bound of Proposition 2 gives a control of the cumulative loss of the sequential procedure described
above. By using the square loss in the algorithm, this bound is more efficient than Proposition 1 where
a variance term appears in the RHS. In the framework of this section, the loss function is λ-exp-concave
for values of λ strictly less than 1/2M2. Moreover, Proposition 2 holds for any choice of prior π. It allows
us in the sequel to choose a particular sparsity prior in order to state a sparsity regret bound of the form
(4.22).

4.2.3 Sparsity regret bounds

The main motivation to introduce our prior is to promote sparsity in the following sense. In g~c(·), we

want a codebook ~c ∈ R
∑d
j=1mjpj where ~c = (c1, . . . , cd) is such that |cj |0 is small for any j = 1, . . . , d,

where :
|cj |0 = card{ij = 1, . . . , pj : cj,ij = (0, . . . , 0)> ∈ Rmj}.

To deal with this issue, we propose a product of d group-sparsity priors according to :

dπS,d(~c) :=
d∏
j=1

pj∏
ij=1

aτ
(

1 +
|cj,ij |22

6τ2

)− 3+mj
2

 d~c,(4.25)

for some constant aτ > 0. This prior consists of a product of d products of pj multivariate Student’s
distribution

√
2τTmj (3), where τ > 0 is a scaling parameter and Tmj (3) is the mj-multivariate Student

with three degrees of freedom. It can be viewed as a generalization of the group-sparsity prior defined
in Section 4.1 where d = 1.

It is important to stress that in (4.25), we don’t need to threshold the prior at a given radius R > 0
such as in Section 4.1 (see the definition of the prior in (4.12)). This is due to the presence of the
square loss with bounded outputs y ∈ Y ⊆ [0,M ]. A straightforward application of Lemma 10 in the
bi-clustering framework gives the following lemma :

Lemma 11. Let p ∈ Nd, τ > 0. Consider the prior πS,d defined in (4.25). Let ~c = (c1, . . . , cd)) ∈
R
∑d
j=1mjpj . Then, if we denote by p0,d the translated version of πS,d with mean ~c, we have :

K(p0,d, πS,d) ≤
d∑
j=1

{
(3 +mj)|cj |0 log

(
1 +

∑pj
ij=1 |cj,ij |2√

6τ |cj |0

)}
.

In this paragraph, we state the main results of this section, i.e. sparsity regret bounds of the form
(4.22) for the algorithm described in Section 4.2.2. The first result is a direct consequence of Proposition
2 and the introduction of the sparsity prior (4.25).

Theorem 20. For any deterministic sequence (xt, yt)
T
t=1, let us consider the algorithm of Section 4.2.2

using prior πS,d defined in (4.25) with τ = δ{
√

24Mp+T}−1 for some δ > 0, λ = 1/2M2 and functions
g~c(·) satisfy (4.19) or (4.20). Then if T is great enough, we have :

T∑
t=1

(yt − ŷt)2 ≤ inf
~c∈C


T∑
t=1

(yt − g~c(xt))2 + C
d∑
j=1

(3 +mj)|cj |0 log T

 ,

where C > 0 is a constant independent of T .
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This result gives a sparsity regret bound where the penalty term is proportional to the sum of the
`0-norm of the set of codebooks ~c = (c1, . . . , cd). The algorithm performs as well as the best compromise
between fitting the data and complexity. It is important to highlight that the RHS does not depend on
the sequence (p1, . . . , pd). Then, as in Section 4.1, we can consider large values of pj to learn the number
of clusters.

Unfortunately, this result is essentially asymptotic since it holds for large values of T . This is due to
the control of the deviation of the random variable g~c′(xt) to g~c(xt) for any t = 1, . . . , T where c′ ∼ p0,d

with p0,d defined in Lemma 11. This problem is specific to the context of bi-clustering where the map
~c 7→ g~c(x) defined in (4.19) or (4.20) is not continuous.

As in Section 4.1, this algorithm in not adaptive since it depends on unknown quantities such as the
constant δ > 0 (see the proof in [L11] for a precise definition) and the horizon T . Adaptive algorithms
could be arranged as in Section 4.1. We can also stress that as in Gerchinovitz [2013], we can avoid the
boundedness assumption Y ⊆ [0,M ]. In this case, the choice of λ > 0 in the algorithm will depend on
the sequence and an adaptive choice could be investigated following Gerchinovitz [2013]. We omit these
considerations for concision but could be the core of a more advanced contribution.

Corollary 20 holds for a family {g~c, ~c ∈ C} satisfying (4.19) or (4.20). An inspection of the proof
shows that a sufficient condition for the family {g~c, ~c ∈ C} is :

|g~c(xt)− g~c′(xt)| ≤M1∃xu∈{x1,...,xt}:f~c(xu) 6=f~c′ (xu) for any ~c,~c′,(4.26)

where f~c :
∏

Rmj 7→
∏
{1, . . . , pj} is the nearest neighbor quantizer associated with the d-tensor code-

book ~c. This inequality holds in particular for families (4.19) or (4.20). Corollary 7 proposes to generalize
the previous regret bound to a richer class of base functions :

{gk
~c , ~c ∈ C, k ∈ {1, . . . , N}},

where for any value of k = 1, . . . , N , (4.26) holds for gk
~c . Functions gk

~c includes the previous cases (4.19)
and (4.20) but any other labelizer g~c constructed thanks to the set of past observations in the cell
associated with ~c could be considered. Given this family of N labelizers, we can advance the following
prior in the algorithm described above :

πS,d,Nd(~c, k) =
d∏
j=1

pj∏
ij=1

aτ
(

1 +
|cj,ij |22

6τ2

)− 3+mj
2

 d~c× 1

N

N∑
k=1

δkdk.(4.27)

The introduction of (4.27) allows to enlarge the family of decision functions. It leads to a better sparsity
regret bound with an extra logN term due to the number of base labelizers :

Corollary 7. For any deterministic sequence (xt, yt)
T
t=1, consider algorithm of Section 4.2.2 using prior

πS,d,N defined in (4.25) with τ = δ{
√

24Mp+T}−1 for some δ > 0, λ = 1/2M2 . Then :

T∑
t=1

(yt − ŷt)2 ≤ inf
(~c,k)∈C×{1,...,N}


T∑
t=1

(yt − gk
~c(xt))

2 + C
d∑
j=1

(3 +mj)|cj |0 log T

+ 2M2 logN.

This result improves Corollary 20 since the infimum is the RHS could involves different indexes k. The
prize to pay is an extra M2 logN term due to the introduction of the parameter k in the algorithm. For
instance, consider the case Y = [0,M ]. If N = 2 in Corollary 7 and the family {gk

~c , ~c ∈ C, k ∈ {1, 2}}, is
made of forecasters (4.19) and a median estimator, the algorithm performs as well as the best strategy
between the mean and the median.

4.3 Minimax regret [L9],[L11]

4.3.1 Introduction

In Section 4.1 and Section 4.2, we have proved several sparsity regret bounds for different sequential
algorithms. These bounds are stated in the worst case scenario and have shown different behaviour
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with respect to time horizon T . In online clustering, the sparsity regret bounds have a residual term of
order

√
T log T whereas in bi-clustering, we found better rates in log T . These results are not surprising

since many online learning problems give rise to similar bounds, depending on the properties of the loss
functions. However, in the setting of online clustering, it is natural to ask if better algorithms exist, i.e.
if lower regret could be proved for these problems.

In the context of prediction with expert advices, many authors have investigated the minimax value
of the game. Given a sequence (yt)

T
t=1, and associated experts advices pt := (pt,1, . . . , pt,N ), Cesa-Bianchi,

Freund, Haussler, Helmbold, Schapire, and Warmuth [1997] have focused on the absolute loss and proved
a minimax value of order O(

√
T logN). In Haussler, Kivinen, and Warmuth [1998], a unified treatment

of the problem is suggested with a general class of loss functions. In this context of prediction with a
finite - and static - set of experts, the minimax regret is given by :

VT (N) := inf
(ŷt)

sup
(p1,...,pT )

sup
(yt)

{
T∑
t=1

`(ŷt, yt)− min
k=1,...,N

T∑
t=1

`(pt,k, yt)

}
,

where ` is a loss function. Asymptotic behaviours for VT (N) when T → ∞ have been stated from
logN to

√
T logN depending on particular assumptions over the loss function, such as differentiability.

Many examples are provided in Haussler, Kivinen, and Warmuth [1998], including the square loss, the
logarithmic loss or the absolute loss.

Very often, the proofs of the lower bounds in the deterministic setting use probabilistic arguments.
Surprisingly, by considering stochastic i.i.d. generating processes for the sequence of outcomes, we can
achieve tight bounds that match - at least asymptotically 3 - to the upper bounds. The starting point is
the following inequality :

VT (N) ≥ inf
(ŷt)

EPN×TEQT

{
T∑
t=1

`(ŷt, Yt)− min
k=1,...,N

T∑
t=1

`(pt,k, Yt)

}
,

where pt,k are i.i.d. from P and Y1, . . . , YT are i.i.d. from Q. The rest of the proof consists in finding
particular measures P and Q in order to maximize the lower bound. In this section, we want to state
the same kind of result in the context of online clustering. Using simple probabilistic tools, we prove
minimax results in the context of online clustering and bi-clustering.

4.3.2 Minimax regret in online clustering

According to Section 4.1, we want to investigate the optimality of Theorem 15. For this purpose, we
introduce in the sequel the following assumption :

Sparsity assumption H(s) : Let R > 0 and T ∈ N∗. Then, there exists a sparsity index s ∈ N∗
such that |c?T,R|0 = s, where :

c?T,R := arg min
c∈BT (R)

{∑T
t=1 `(c, xt) + |c|0

√
T log T

}
,

where BT (R) = {c = (c1, . . . , cT ) : |cj |2 ≤ R,∀j}.
This sparsity assumption is related with the structure of the individual sequence xt, t = 1, . . . , T . It
means that the sequence could be well-approximated by s codepoints since the infimum is reached for a
sparse codebook c?T,R. In what follows, we also introduce the set :

ωs,R :=
{

(xt)
T
t=1 such that H(s) holds

}
⊆ RdT .

With this notation, we have shown essentially that for any s ∈ N∗, any R > 0, the online algorithm
presented in Section 4.1 satisfies :

sup
(xt)∈ωs,R

{
T∑
t=1

`(ĉt, xt)− inf
c∈BT (R):|c|0=s

T∑
t=1

`(c, xt)

}
≤ const.× s

√
T log T.

3. More recently, Audibert [2009] has given non-asymptotic lower bounds in both statistical and online learning by using
the same probabilistic reduction scheme.
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Then, for any s ∈ N∗, R > 0 we could investigate a lower bound according to :

inf
(ĉt)

sup
(xt)∈ωs,R

{
T∑
t=1

`(ĉt, xt)− inf
c∈BT (R):|c|0=s

T∑
t=1

`(c, xt)

}
≥ const.′ × s

√
T log T.

Unfortunately, in the inequality above, the infimum in taken over any (ĉt)
T
t=1, that is with no restriction

with respect to the `0-norm. Then, the LHS could be arbitrarely small and the lower bound does not
match with the upper bound of Section 4.1. To impose a sparsity assumption for (ĉt), we need to
introduced a penalized loss. Next theorem provides a lower bound for an augmented value VT (s) defined
as :

VT (s) := inf
(ĉt)

sup
(xt)∈ωs,R

{
T∑
t=1

(
`(ĉt, xt) +

log T√
T
|ĉt|0

)
− inf

c∈BT (R):|c|0=s

T∑
t=1

`(c, xt)

}
,(4.28)

In (4.28), we add a penalization term for each ĉt, in terms of `0-norm. As a result, to capture the
asymptotic behaviour of VT (s), we also need to state an upper bound with a penalized loss as in (4.28).
This is done in the following theorem that combines an upper and lower bound for the minimax regret.

Theorem 21. Let s ∈ N∗, R > 0 such that :

s ≤

3

2

(
R
√
T

14 log T

)d .(4.29)

Then :

s
√
T log T (1 + oT (1)) ≤ VT (s) ≤ s

√
T (log T )2.(4.30)

The result of Theorem 21 gives the order of (4.28), up to a log T term. Assumption (4.29) over s is
necessary for the statement of the lower bound. A similar hypothesis is used in Bartlett, Linder, and
Lugosi [1998]. It is necessary here to construct the family of measures in the probabilistic reduction
scheme described above.

Proof: The proof of the first inequality is based on the probabilistic method described above, where we
replace the supremum over the individual sequence in VT (s) by an expectation. Gathering with a suitable
choice of the probability distribution inspired from Bartlett, Linder, and Lugosi [1998], we conclude the
proof.

To prove the second inequality, we can use Proposition 1 to the penalized loss function `α(c, x) =
`(c, x) + α|c|0 with α = log T/

√
T to get :

T∑
t=1

`α(ĉt, xt) ≤ inf
ρ∈∆(Rdp)

{
E~c∼ρ

T∑
t=1

`α(c, xt) +
K(ρ, π)

λ
+
λ

2
E(p̂1,...,p̂T )E~c∼ρ

T∑
t=1

[`α(c, xt)− `α(ĉt, xt)]
2

}
.

Applying the same paths as in the proof of Theorem 15, a choice of α = log T/
√
T , λ = 1/

√
T , a prior

πS with scale parameter τ = 1/
√
T and p =

√
T allows to get the desired upper bound.

4.3.3 Minimax regret in online bi-clustering

In the context of Section 4.2, we want to prove the minimax optimality of Theorem 20. For this
purpose, we introduce a modified sparsity assumption related to the bi-clustering problem :

Sparsity assumption H′(s) : There exists a sparsity index s ∈ N∗ such that
∑d

j=1 |c?T,j |0 = s where :

~c?T := arg min
~c

{∑T
t=1(yt − g~c(xt))

2 +
∑d

j=1(3 +mj)|cj |0 log T
}
.
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This sparsity assumption is related with the individual sequence (xt, yt), t = 1, . . . , T . Loosely speaking,
under H′(s), the individual sequence is made of a small number of clusters of inputs with same labels.
In what follows, we also introduce :

ω′s :=
{

(xt, yt)
T
t=1 such that H′(s) holds

}
.

With this notation, we have shown in Theorem 20 the existence of a sequential algorithm (ŷt)
T
t=1 such

that for any s ∈ N∗, for T great enough :

sup
(xt,yt)∈ω′s

{
T∑
t=1

(ŷt − yt)2 − inf
~c∈B1(s)

T∑
t=1

(yt − g~c(xt))
2

}
≤ const.× s log T,

where B1(s) := {~c :
∑d

j=1 |cj |0 = s}. Then, for any s ∈ N∗, we investigate the order of the minimax
value :

V ′T (s) = inf
(ŷt)

sup
(xt,yt)∈ω′s

{
T∑
t=1

(ŷt − yt)2 − inf
~c∈B1(s)

T∑
t=1

(yt − g~c(xt))
2

}
.

Following the guiding thread presented above, in this case we can move to a simple probabilistic setting
as follows :

V ′T (s) ≥ inf
(ŷt)

EµT

{
T∑
t=1

(ŷt − Yt)− EνN min
k=1,...,N

T∑
t=1

(Yt − g~ck(Xt)

}
,

where (Xt, Yt)
T
t=1 ∼ µT and (~ck)

N
k=1 ∼ νN . By choosing µT and νN maximizing the RHS, one gets :

Theorem 22. Suppose Y = {0, 1} for simplicity and g~c(·) satisfies (4.19). Then, there exists a constant
a > 0 such that for T large enough :

V ′T (s) ≥ a log T.

The proof of the lower bound follows Haussler, Kivinen, and Warmuth [1998]. However, since the family
g~c(·) depends on the set of observations, we use in the proof a martingale version of the central limit
theorem due to Brown [1971].



Nothing is more practical...

The last two decades have witnessed an increasing interest in high dimensional statistics (Bühlmann
and van de Geer [2011]). Motivated by applications, many authors have studied models where the num-
ber of parameters p is larger than the number of observations n. In such a setting, two different issues
have been opposed : theoretical guarantees and computational aspects. The lasso has been introduced
and extensively studied to move to computational feasible algorithms. By the way, these considerations
show rather well a common interest in algorithms for both - statistical and machine learning - commu-
nities and make the frontier between learning and statistics difficult to mark out (and then Breiman’s
point of view in Breiman [2001] disputable). Mathematical statistics and learning theory have a common
motivation : improving the knowledge after observing data. This is exactly the guiding thread of the last
chapter of this work, regarding concrete applications.

Each problem adressed in Chapter 5 corresponds to a collaboration with other scientists in different
fields, such as biology, medicine or industry. We present three different applications that deal with plant
architecture, medical diagnostic and sports analytics. The only common feature is the introduction of
well-known machine learning tools, such as kernel principal component analysis, aggregation or Sup-
port Vector Machines. It shows one more time that learning theory is an awesome source of potential
applications.

... than a good theory !
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Chapitre 5

Machine learning for real-world
problems

In this chapter, we outline some collaborations in applied statistics since my nomination in Angers.
Applied statistics means that we are facing real-world problems. Each section corresponds to a collabo-
ration with scientists from biology, medicine or industry and do not fit exactly the setting of Chapter
2-3-4. Consequently, this chapter is not directly bind with these theoretical results. Nevertheless, we
use tools at the heart of learning theory such as kernel principal components analysis, aggregation with
exponential weights or Support Vector Machines.

5.1 QTL mapping with kernel methods [L5],[L17]

5.1.1 Introduction

‘Plant architecture’ refers to spatial and topological structure of plants (Barthélémy and Caraglio
[2007]) and determines important aspects of plant function, including productivity (Sakamoto and Mat-
suoka [2004]), mechanical stability (Niklas [1994]), leaf-display efficiency (Pearcy, Muraoka, and Valla-
dares [2005]), and disease resistance (A., Milbourne, Ramsay, Meyer, Chatot-Balandras, Oberhagemann,
Jong, Gebhardt, Bonnel, and Waugh [1999]). Therefore, phenotyping method of plant architecture is
necessary for (i) understanding the relationship between plant form and function, (ii) the genetic impro-
vement of crop plants, as well as (iii) the development of simulation models of plant growth. Previous
studies have thus developed various methodologies for phenotyping plant architectures, such as topolo-
gical (Godin and Caraglio [1998], Ferraro and Godin [2000], Segura, Ouangraoua, Ferraro, and Costes
[2008]), three-dimensional (Pearcy, Muraoka, and Valladares [2005], Godin, Costes, and Sinoquet [1999]),
allometric (Niklas [1994]), fractal (Ferraro, Godin, and Prusinkiewicz [2005]), and stochastic approach
(Guédon, Barthélémy, Caraglio, and Costes [2001], Costes and Guédon [2002], Renton, Guédon, Godin,
and Costes [2006]). These approaches have successfully analyzed and modeled precise plant architec-
ture and its development. However, few studies apply them for phenotyping a large number of plants,
which is required in the studies on genetic mapping of Quantitative Trait Loci (QTL) controlling plant
architecture.

The QTL mapping of plant architecture is a critical step for understanding the genetic determinism of
plant architecture and its genetic improvement by molecular breeding (Sakamoto and Matsuoka [2004]),
but it requires phenotyping a large number of plants (n > 100). The elaborated methodologies of
phenotyping plant architecture are quite labor-intensive and are not applicable to a large number of
plants. As plant architectural traits are continuous and are likely to change with changes in environmental
conditions (i.e., low heritability) (Kawamura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011]),
replicated phenotypic measurements are necessary to evaluate their genetic variances. Furthermore, QTL
analyses of phenotypic data measured at a single time point are too simple to reveal the genetic control of
developmental processes of plant architecture. The functional mapping approach that fits mathematical
models on growth trajectories and analyses genetic determinants of the model parameters is necessary
to elucidate the genetic and developmental basis of plant growth and structure (Ma, Casella, and Wu
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[2002], Wu, Cao, Huang, Wang, Gai, and Vallejos [2011]). This approach requires repeated phenotypic
measurements during the development as well as appropriate mathematical models. These difficulties
of phenotyping plant growth and architecture were referred to as ‘phenotyping bottleneck’ in plants
(Furbank and Tester [2011]). This phenotyping bottleneck can now be addressed by combining novel
technologies such as digital imaging, spectroscopy, robotics, and high-performance computing (Furbank
and Tester [2011]), while most previous studies on QTL mapping of plant growth and architecture have
performed manual phenotyping using simple geometric and topological measurements, such as plant
biomass, height, shoot length, diameter, branching intensity, leaf length, and width (Wu [1998], Segura,
Cilas, Laurens, and Costes [2006], Upadyayula, Wassom, Bohn, and Rocheford [2006], Onishi, Horiuchi,
Ishigoh-Oka, Takagi, Ichikawa, Maruoka, and Sano [2007], Segura, Ouangraoua, Ferraro, and Costes
[2008], Song and Zhang [2009], Kawamura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011],
Tian, Bradbury, Brown, Hung, Sun, Flint-Garcia, Rocheford, McMullen, Holland, and Buckler [2011],
Zhang, Jiang, Chen, Chen, and Fang [2012]), and have analyzed them one by one. However, many of
these quantitative traits were generally correlated to each other, which give rise to statistical problem
in the detection of QTL.

One-by-one QTL analysis and multiple QTL Mapping

Statistical methods for detecting QTL were originally designed for a trait-by-trait study, mostly using
maximum likelihood (see Lander and Botstein [1989]) or linearised approximation (see Haley and Knott
[1992]). In a first study with I.N.R.A., we analyse the phenotypic data of the date of flowering over 8
years and the number of petals over two years in two populations which have the same male parent.
We identify QTLs controlling these characters in [L16]. Several authors have tried to analyze complex
phenotype expression such as architecture of inflorescence. For instance Upadyayula, Wassom, Bohn,
and Rocheford [2006] proposes to study maize tassel inflorescence considering 13 correlated inflorescence
traits whereas Kawamura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011] studies a F1 diploid
garden rose population with 10 traits associated with the developmental timing and architecture of the
inflorescence and with flower production. Then, a one-by-one QTL analysis is proposed to explain the
continuous variation of each trait separately. The results of such an approach often suggest that several
traits are influenced by the same or linked loci. From the biological viewpoint, many questions involve
the interaction between multiple traits and as a result a separate one-by-one analysis is not the most
efficient. Moreover, from statistical viewpoint, the power of hypothesis tests (such as QTL mapping)
tends to be lower for separate analyses.

To answer to this issue, several multiple QTL mapping have been proposed in the last decade,
sometimes derived from single trait methods. Jiang and Zeng [1995] suggests multiple QTL mapping
to combine several traits in an unified analysis. It has the advantage to test a number of biological
hypotheses concerning the nature of genetic correlation (pleiotropy, QTL× environment interaction).
This method is shown to be more efficient compared with single trait analysis ( see Hackett, Meyer, and
Thomas [2001]) but suffers from the curse of dimensionality. The number of parameters to estimate is
higher and limits statistical power and computing time. Another approach to deal with multiple traits
is based on standard multivariate analysis such as Principal Component Analysis (PCA for short in the
sequel). Originally used in Weller, Wiggans, Vanraden, and Ron [1996] for dairy cow data, there are based
on a linear combination of the traits in which most of the information is summarised (called the Principal
Component). Then, a single trait analysis can be performed on this first PC. The PCA was applied to
the QTL mapping of leaf morphology (Langlade, Feng, Dransfield, Copsey, Hanna, Thébaud, Bangham,
Hudson, and Coen [2005]). The coordinates of 19 points along the leaf margin and mid-vein were obtained
from leaf images as a numerical summary of the shape and size of the leaf. The coordinate values were
then integrated into three orthogonal axes through PCA, and QTL analysis was performed to the PC
values. Another attempt is presented in the analysis of maize inflorescence architecture (Upadyayula,
Wassom, Bohn, and Rocheford [2006]), giving interesting and promising results. The existence of ”PC
exclusive QTL” illustrates quiet well the necessity to deal with such a multivariate analysis. Gibert and
LeRoy [2003] proposes extensive simulations to compare such multitraits methods, including another
multivariate analysis called discriminant analysis (see Mardia, Kent, and Bibby [1979]).
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Kernel methods

Biology is facing many machine learning challenges. Massive amounts of data are generated, cha-
racterized by structured and heteregeneous data (sequences, 3D structures, graphs, networks, SNP) in
large quantities and high dimension. At the core of the machine learning methodology, kernel methods
have been extensively used to solve many biological problem in the last two decades. We can mention
for instance predictive methods for protein function annotation (Zhou, Chen, Li, and Zhou [2007]), gene
expression analysis or gene selection for Microarray Data (Scholkopf, Tsuda, and Vert [2007] which sur-
veys the topic of using kernel methods to study biological data). A striking example of a kernel method
is the Support Vector Machines (SVM) algorithm due to the pioneering’s works of Vladimir Vapnik.
The idea of many kernel methods is to map the dataset into an infinite dimensional space, called feature
space, where the analysis takes place. This mapping is performed by using a so-called kernel function,
which measures the similarities between two inputs x and y with the value k(x, y). The construction
of various type of kernels, for various type of data, allow to treat many biological problem of pattern
recognition, regression estimation or PCA. This idea was originally used for classification with Support
Vector Machines (see Boser, Guyon, and Vapnik [1992]), or in principal component analysis with Kernel
Principal Component Analysis (KPCA, see Schölkopf and Smola [2002]).

Our contribution

In this section, we aim to test the applicability of kernel PCA to QTL mapping of complex plant
architectural traits. The main tools developed in this section could be use to tackle the general problem
of QTL mapping of complex (sequences, 3D structure, graphs) phenotypic traits. The idea is to consider
these observations directly as inputs and to work in an infinite dimensional feature space thanks to a
kernel function. Kernel PCA gives a new and concise representation of the data, which is then used to
perform QTL mapping without the problem of multiple, correlated data.

Specifically, we apply the method to the QTL mapping of rose inflorescence architecture. In the
previous work (Kawamura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011]), QTL mapping
of inflorescence architectural traits was performed in a garden rose population. In the population, roses
formed a wide variety of inflorescence architecture ; a simple inflorescence formed one terminal flower
and a few lateral flowers, whereas in a compound inflorescence, lateral shoots continuously branched
into higher order shoots and produce numerous flowers (up to 200 flowers). We analyzed total nine
traits associated with the length, node number, and branching intensity of inflorescence shoot (see
inflorescence architectural traits, Figure 5.1) and found that most of these nine traits were strongly
correlated to each other and they shared QTLs. We finally identified total six common QTLs (cQTLs)
as genetic determinants of these nine architectural traits (see cQTL controlling the traits, Figure 5.1).
In the present chapter, we use the same rose population and genetic map (Kawamura, Oyant, Crespel,
Thouroude, Lalanne, and Foucher [2011]) and perform QTL analysis of KPCA scores derived from a
simple sequence data of flower distribution along inflorescence shoot. We hypothesize that the KPCA
approach identifies a “new QTL”, which was not detected by the previous work. Note that a test study
using artificial data of simulated inflorescences with different types of flower distribution has been also
performed in [L5] to show the ability of kernel methods to classify different inflorescence architectura.
We omit these results to focus on the real dataset in this chapter dedicated to real-world applications.

Real dataset of rose population

Real dataset of inflorescence architecture was collected from the F1 hybrid population of rose (Kawa-
mura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011]). This population consists of a progeny
of 98 diploid F1 hybrids from a cross between diploid roses TF x RW. The female parent TF is a
commercial cultivar,The Fairy, and the male parent RW is a hybrid of Rosa wichurana. Both parents
develop a highly branched compound inflorescence, and their F1 hybrids show a large genetic variation
of inflorescence architecture. Three replicated clones were created for each 100 genotypes (= 98 F1 hy-
brid and their parents) by vegetative propagation. A total 300 plants are cultivated in a field of INRA,
Angers, France, since 2004. We collected inflorescence data from the 1st order shoot that developed in
spring during two years 2008-2009. Inflorescence is defined as the top of the 1st order shoot that bore
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Figure 5.1 Pictorial representation of branching structure of 1st order shoot and inflorescence garden
rose. Definitions of terms are on the right. Open circle indicates a flower. The main axis corresponds
to the 1st order shoot, and the lateral shoots developing from the 1st order axis are 2nd order shoots.
The boundary between vegetative part (VEG1 ) and the inflorescence (INF1 ) of the 1st order shoot is
defined according to the changes in leaf morphology from normal leaves (nLs) to bract-like leaves (bLs).
The numbers of flower produced by 2nd order shoots are counted along INF1 axis from the base (8, 4,
4, 3, 2, 1) and are analysed by kernel method as a vector. Other architectural trait values of the picture
are as follows ; NV1 = 7, NF1 = 6, NF2 = 4, NBF2 = 3, BIF2 = 75, FLW = 22. Common QTL
regions (cQTL) controlling these traits are also listed on the right. After modification of Figure 1 from
Kawamura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011].

bract-like leaves (INF1, Figure 5.1). For each of the 2nd order shoots that developed from the INF1,
we count total number of flowers. Then, we define the real dataset as a sequence of flower number per
node from the base to tip of the INF1. The sum of them corresponds to the total number of flower per
inflorescence. Measurements are made on three vigorous shoots per plant in each of the two years, and
in total the data of 1460 shoots are obtained and analyzed.

5.1.2 Kernel PCA and QTL analysis

Kernel Principal Component Analysis (KPCA)

One of the most fundamental steps in data analysis and dimensionality reduction consists in ap-
proximating a given data set by a low-dimensional subspace, which is clasically achieved via Principal
Component Analysis (PCA). Kernel PCA is the kernelized version of the classical PCA. Given a (n×p)-
matrix X = [X1 . . . Xp] of n observations x1, . . . , xn ∈ Rp, the key step for PCA is the diagonalization of
the correlation matrix, given by the inner product 〈Xi, Xj〉 between variables. Another way of expressing
PCA is to consider the diagonalization of the inner product or Gram matrix XXt, defined as :

(XXt)ij = 〈xi, xj〉,
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where 〈·, ·〉 denotes the usual scalar product in the Euclidean space Rp. In this case, principal components
are calculated from the Gram matrix associated to the usual scalar product. Kernel PCA simply mimics
this procedure, replacing the inner product matrix by the Gram matrix K given by :

Kij = k(xi, xj),

where k is a kernel function. For each pair (xi, xj), the quantity k(xi, xj) measures the similarity bet-
ween xi and xj . From the mathematical viewpoint, k is a symmetric and positive definite function (see
Cristianini and Shawe-Taylor [2000]). As a result, given a kernel function k, KPCA method provides
the best linear combination of the feature variable k(xi, ·), where the dispersion is measured through a
kernel function k. Consider a vector x ∈ Rp as a shoot, where each coordinate corresponds to the num-
ber of flowers in a node. In this framework, a kernel is a symmetric and positive definite function which
associated to each pairs of shoots (x, y) a similarity measure given by k(x, y). In this work, gaussian-type
kernels are considered :

k(x, y) = exp(−σ‖x− y‖2),(5.1)

where ‖x− y‖ stands for a particular distance between x and y and σ > 0 is a tuning parameter. In the
sequel, we called kdist 1 the gaussian kernel (5.1) where ‖ · ‖ is the standard Euclidean distance in Rp
between shoots :

kdist(x, y) = exp

(
−σ

p∑
i=1

(xi − yi)2

)
.(5.2)

The gaussian kernel (5.2) has a tuning parameter, namely the so-called bandwidth σ > 0. This parameter
has to be chosen in a careful way. We test different values for σ from σ = 0.001 to σ = 10 according to
a genetic criterion called heritability.

QTL analysis of Kernel Principal Components (KPCs)

Least square means (LS means) is computed for each KPCs for each genotype. QTL analyses are
carried out using MAPQTL R© 5.0 (Ooijen [2004]) on the LS means and integrated map constructed by
Kawamura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011]. First, we use Kruskal-Wallis test
for the rough estimation of QTL location over all KPCs derived from different kernel functions. The
test ranks all genotypes according to the LS means, while it classifies them according to their marker
genotype. A segregating QTL linked closely to the tested marker will result in large differences in average
rank of the marker genotype classes. Based on the genetic map distribution of the significant markers,
we estimate the location of underlying QTL. The linkage group with a segregating QTL must reveal a
gradient in the test statistic towards the marker with the closest linkage to the QTL.

Secondly, interval mapping is performed for some KPCs in order to confirm the results of Kruskal-
Wallis test and to make a more precise estimation of QTL location and effects. A LOD threshold from
which a QTL is declared significant is determined according to an error rate of 0.05 over 1000 permu-
tations of the data (Churchill and Doerge [1994]). Then, interval mapping analysis is performed with a
step size of 1 cM to find regions with potential QTL effects, i.e., where the LOD score is greater than
the threshold. In the region of the potential QTLs, the markers with the highest LOD values are taken
as cofactors. A backward elimination procedure is used to select cofactors significantly associated with
each trait at p-value< 0.02. Subsequently, multiple QTL mapping (MQM, Jansen and Stam [1994]) is
performed with a step size of 1 cM. If LOD scores in the region of the potential QTLs are below the
significance threshold, their cofactor loci is removed and MQM mapping is repeated. QTL positions is as-
signed to local LOD score maxima. Confidence intervals of the map position is indicated in centimorgans
corresponding to a 1 or 2-LOD interval. The percentage of phenotypic variance explained by each QTL
(r2) is taken from the MQM mapping output. The total percentage of phenotypic variance explained by

1. In the full version of this work, we also consider other Gaussian kernels constructed with different distances such
as the kernel kdistderiv, associated with the discrete derivative of a shoot given by : x = (0, 4, 2, 2, 1, 0, 0) −→ x′ =
(4,−2, 0,−1,−1, 0). We focus here on (5.2) because it gives satisfying result for the real-world dataset described previously.
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all significant QTLs (R2) is also calculated. The R2 is then divided by h2 (percentage scale) to estimate
the proportion of genotypic variance explained by the QTL. Allelic effects is also estimated as described
in Kawamura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011].

5.1.3 Main results

We assess the genetic variability of Kernel Principal Components (KPCs) derived from real datasets
since QTL analysis assumes the high genetic variability of trait. Genetic variability of KPCs is evaluated
by calculating its broad-sense heritability. Coarselly speaking, the total variance of KPCs is decomposed
into different components. Broad sense heritability (h2) based on genotypic mean values averaged across
years is calculated as a ratio between the genetic variance and the total variance (see Kawamura, Oyant,
Crespel, Thouroude, Lalanne, and Foucher [2011]). The analysis is conducted using JMP software version
8.0 (SAS Institute, Inc., Cary, NC).

Generally, the first principal component Z1 has a large heritability compared to the other components,
and there are high correlations between Z1 and total number of flowers (FLW ) per inflorescence (Spear-
man’s rank correlation coefficient > 0.6, p-value < 0.001). This suggests that in the studied population,
a large part of genetic variation in inflorescence architecture is owing to the variation in flower number
(i.e., size of inflorescence). Kruskal-Wallis test identify the markers that have significantly different Z1
scores between genotype classes. All of them are located in the genomic region of cQTL3 and/or cQTL4,
where major QTLs for FLW were detected by the previous study (see Table 2, Table 1S in [L5]).

The other principal components of kdist functions have also substantial genetic variations (h2 > 0.5).
Kruskal-Wallis tests for these components show that most of their significant markers are located in the
six cQTL regions (Table 2, 1S). These loci were previously detected by QTL mapping of inflorescence
architectural traits, such as the length (LF ), the node number (NF ) and the branching intensity (BIF )
of inflorescence shoots (Figure 5.1). This indicates that our kernel principal components derived from the
data of a sequence of flower number along inflorescence shoot can integrate the architectural variations
of inflorescence shoots.

Interestingly enough, Kruskal-Wallis test for the KPCs of kdist function with σ = 0.025 and 0.05
detects significant markers in linkage group 6, where the previous study have not detected any QTLs for
inflorescence architecture. This indicates the discover of a new QTL. In order to confirm the result, we
perform MQM mapping analysis on the KPCs derived from the function kdist with σ = 0.025.

MQM mappings for first five components derived from kdist function with σ = 0.025 identify total
11 QTLs, most of which have overlapping confidence intervals with known cQTL regions controlling
architectural traits (Figure 5.2), indicating that the cQTL regions influence not only architectural traits
but also the distribution pattern of flower number along inflorescence shoot. For the first KPC Z1kdist,
there are two major QTLs, each of which explains more than 20 percent of phenotypic variance, in
LG4 (Z1kdist-1 ) and in LG3 (Z1kdist-2 ). There is also a minor QTL (Z1kdist-3 ) in LG5. All these
QTLs are localized in known cQTL regions controlling inflorescence architectural traits (Figure 5.2).
In the cQTL4 region, Kawamura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011] identified
major QTLs controlling the internode length (LV1, LF2 ), the branching intensity (BIF2 ), and the total
number of flowers (FLW ) of inflorescence shoots (Figure 5.1). The cQTL3 region also contains major
QTLs controlling the number of nodes (NF1 and NF2 ) and the branching intensity (BIF2 ,NBF2 )
of inflorescence shoots (Figure 5.1). In support to the colocalization of QTLs, the KPC Z1kdist is
highly correlated with inflorescence architectural traits, especially with the internode length (LF2 ),
the branching intensity (NBF2, BIF2 ), and the total flower number (FLW ) of inflorescence shoots
(Spearman’s rank correlation coefficient > 0.7, data not shown). The third and fourth KPCs Z3kdist and
Z4kdist are also significantly correlated with the internode length (LF1, LF2 ), the branching intensity
(NBF2, BIF2 ), and the total flower number (FLW ) of inflorescence shoots. The QTLs for Z3kdist and
Z4kdist are all colocalized with the known cQTL regions in LG3 (Z3kdist-2, Z4kdist-2 ), in LG4 (Z3kdist-
1 ), or in LG7(Z4kdist-1 ) (Figure 5.2). In contrast, the fifth KPC Z5kdist is not significantly correlated
either with the internode length, the branching intensity, or the total flower number of inflorescence
shoots. It is significantly correlated with the number of nodes (NV1, NF1, NF2 ). In support to the
result of this correlation analysis, Z5kdist have a major QTL (Z5kdist-1 ) in the cQTL1 region (Figure
5.2), where Kawamura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011] identified major QTLs
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Figure 5.2 Genetic map locations of QTLs for five kernel principal components (KPCs) detected by
multiple QTL mapping in 98 F1 diploid roses derived from the cross TF x RW. The KPCs are obtai-
ned by applying kernel function kdist with = 0.025 to the sequence data of flower number per node
along inflorescence axes. Common genomic regions of QTLs (cQTLs) for 10 inflorescence developmental
traits previously identified by Kawamura, Oyant, Crespel, Thouroude, Lalanne, and Foucher [2011] are
also indicated. QTLs are illustrated by boxes whose length represents the LOD-1 confidence interval.
Extended lines represent the LOD-2 confidence interval. Left bar shows the map scale in cM. For QTL
abbreviation, see Table 3 from [L5].

controlling the number of nodes per inflorescence shoots (Figure 5.1). Thus, the most QTLs detected
for the KPCs are located in the previously identified cQTL regions controlling inflorescence architecture
and are likely to be involved in the regulation of internode elongation, node production, and/or axillary
branching of inflorescence shoots.

An exception is the second KPC Z2dist, which have a major QTL (Z2dist-1 ) in LG6 (Figure 5.2),
where the previous study did not detect any QTLs. The genotypic correlation analysis shows that the
Z2kdist is not significantly correlated with any architectural traits, such as the internode length (LF ), the
node number (NF ) or the branching intensity (BIF ) of inflorescence shoots. It is just weakly correlated
with the total number of flower (FLW ) per inflorescence (Spearman’s rank correlation coefficient =
-0.23, p-value< 0.05). Thus, the Z2kdist is not characterized by simple architectural traits, such as
the length, number, and branching intensity of nodes. It is also not a simple measure of inflorescence
size. As a result, the newly identified QTL Z2kdist-1 might be involved with the control of flower
distribution along inflorescence shoot. In the Z2kdist-1 region, a candidate gene, RoTFL1b, a homologue
gene of TERMINAL FLOWER 1 of Arabidopsis thaliana (Iwata, Gaston, Remay, Thouroude, Jeauffre,
Kawamura, Oyant, Araki, Denoyes, and Foucher [2012]), is co-localized (Figure 5.2).

5.1.4 Conclusion

This contribution demonstrates the applicability of KPCA method for QTL mapping of a complex
plant architectural trait, namely the inflorescence architecture. We assess the usefulness of different kernel
methods based on the calculation of heritability of KPCA components. This allows us to select the kernel
function that discriminates well the genetic variance of the focused traits in the studied population. The



92 CHAPTER 5 –REAL-WORLD PROBLEMS

QTL analysis of kernel principal components identifies a new QTL, which was not detected by a trait-by-
trait analysis. We have tried to characterize the function of Z2kdist-1. We can conjecture that the Z2kdist
represents the distribution pattern of flower along inflorescence axis. To test the hypothesis, we can
examine the correlation between the Z2kdist and simple indices of flower distribution along inflorescence
axis. The simple indices of flower distribution are obtained by counting the number of nodes where the
accumulative number of flower attains 50 percent of total number of flower. The calculations are done for
each shoot both from the base and the tip of inflorescence axis (INF1, Fig. 5.1). The indices, obtained by
counting from the base and the tip, are named as B50 and T50, respectively. Either the B50 or the T50
are not significantly correlated with the Z2kdist (p-value> 0.1). QTL analysis does not detect significant
QTLs on LG6 either for the B50 or for the T50 (data not shown). Therefore, the Z2kdist could not be
characterized by the simple indices of flower distribution tested here. A detailed pattern analysis (e.g.,
Guédon, Barthélémy, Caraglio, and Costes [2001]) may be necessary to interpret the Z2kdist and the
function of Z2kdist-1.

The RoTFL1b is a candidate gene for the Z2kdist-1. In Arabidopsis thaliana, TFL1 is expressed in
shoot apical meristem to maintain meristem indeterminacy and control inflorescence architecture (Pru-
sinkiewicz, Erasmus, Lane, Harder, and Coen [2007]). Overexpression of TFL1 delays flower formation
and forms a highly branched inflorescence, while tfl1 mutants have a short vegetative phase and form a
simple determinate inflorescence with a terminal flower (Bradley, Ratcliffe, Vincent, Carpenter, and Coen
[1997]). The structure and function of TFL1 gene is greatly conserved in plants (reviewed by McGarry
and Ayre [2012]). We recently demonstrated that RoKSN, another TFL1 member in rose, is expressed in
shoot apical meristem and plays a role in the repression of flowering, and ksn mutants have a continuous
flowering habit (Iwata, Gaston, Remay, Thouroude, Jeauffre, Kawamura, Oyant, Araki, Denoyes, and
Foucher [2012]). Given the high degree of sequence similarity between RoKSN and RoTFL1b (Iwata,
Gaston, Remay, Thouroude, Jeauffre, Kawamura, Oyant, Araki, Denoyes, and Foucher [2012]), it is likely
that the RoTFL1b is also involved in the control of floral transition and inflorescence development in
rose. Future expression analysis and physiological study will be necessary to clarify the hypothesis.

5.2 Fibrosis staging with aggregation

Fibrosis is the formation of excess fibrous connective tissue in an organ, due to a reactive process.
Fibrosis can arise in many tissues within the body, such as lungs, heart, skin or intestine. In liver,
cirrhosis is a result of advanced fibrosis and leads to a loss of liver function. It is most commonly caused
by alcoholism, hepatitis (B and C) or other possible causes. HIFIH laboratory develops accurate and
non-invasive blood-tests for identifying stage of fibrosis, for instance in non alcoholic fatty liver disease
(NAFLD) (see Calès, Boursier, Chaigneau, Lainé, Sandrini, Michalak, Hubert, Dib, Oberti, Bertrais,
Hunault, Cavaro-Ménard, Gallois, Deugnier, and Rousselet [2010]) or in chronic hepatitis C (Calès,
Boursier, Ducancelle, Oberti, Hubert, Hunault, Lédinghen, Zarski, Salmon, and F.Lunel [2014]). In this
section, we want to use aggregation methods to predict the fibrosis stage thanks to simple biomarkers
in order to propose an automatic blood-test based method.

Dataset description
All of the 1012 patients included in the derivation population has a fibrosis variable F from 0 (Fibrosis

absence) to 4 (cirrhosis) gathering with 6 blood-tests variables related with different quantities, levels
or rates. It includes X1 (G/l, platelets or thrombocytes), X2 (UI/i, aspartate amino-transferase), X3

(mmol/l, blood urea level), X4 (%, Prothrombine blood rate), X5 (mg/dl, Alpha2macroglobulin), X6

(UI/l, gamma glutalyl transpeptidase quantity). Eventually, we use X7 (Age of the patient) and X8

(Male/Female).

Multinomial Logistic Regression (MLR)
The value of F has been measured thanks to an invasive method. In order to develop non-invasive

methods based on blood-tests, we propose to use a multinomial logistic regression model from the input
variables X1, . . . , X8 described above. The logistic regression model consists in modelling the posterior
probabilities ηk(x) := P(F = k|X = x), k = 0, . . . ,K − 1 via a linear function in x. We use in the sequel
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the following logit transformations :

∀k = 0, . . . ,K − 1, log

(
ηk(x)

ηK(x)

)
= β>k · (1, x),

where (1, x) = (1, x1, . . . , x8) for simplicity. Then, a simple calculation shows that :

P(F = k|X = x) = ηk(x|β) =
eβ
>
k ·(1,x)

1 +
∑K−1

j=0 eβ
>
j ·(1,x)

.

The model of logistic regression is widely used in biostatistics for K = 1 (binary classification), where
in this case there is only a single linear function. In our problem, parameters (βk)

K−1
k=0 are usually fitted

by maximum likelihood. The associated first order conditions are in matrix notation as follows :

X>(y − p) = 0,

where X is the data matrix with n = 1012 rows and d = 8 + 1 columns, y is the vector of fibrosis stages
and p is the vector of fitted probabilities given by (η1(xi|β), . . . , ηk(xi|β))>. Then, a Newton-Raphson
algorithm could be performed.

According to the health care professional, 9 logistic regressions were calculated thanks to the dataset.
The first one is the multinomial logistic with d = 9 when we consider the entire set of feature variables.
It is called MLRtot. Then, we construct 8 other logistics by avoiding one variable from the dataset. It
gives MLR1, . . ., MLR8 where MLRk is the logistic without Xk. The associated classifier are denoted as
ftot, and fj , j = 1, . . . , 8 and are given by the following formula :

fj(x) = arg max
k=0,...,K−1

ηk(x|β̂j),

where β̂j is the solution of the Newton-Raphson gradient descent associated with MLRj computed with
package VGAM.

Aggregation with Mirror Averaging (MA)
Aggregation methods are very popular in machine learning. The principle of the method is to construct

a combination of a finite number M ≥ 1 of base learners {f1, . . . , fM}, in order to give an accurate
prediction strategy. This is an alternative to the well-known empirical risk minimization principle, which
selects a particular classifier in a given family. The main motivation is as follows. Very often, a particular
classifier can not perform well on each occurence of a test set. Then, the use of a combination of classifiers
instead of a single method can lead to better results. Most of the time, the sample is divided into two
parts : the first part is used to construct a family of base learners whereas the second part is used to
construct the associated weights 2.

Equipped with a family of preliminary functions, denoted as Φ = {f1, . . . , fM}, we construct our
final decision sequentially. At each trial t = 1, . . . , n, for j = 1, . . . ,M , we compute the empirical risk
rt,j of classifier fj ∈ Φ at time t and associated weights ŵt,j as follows :

ŵt,j =
e−λrt,j

Wt
, where rt,j =

t∑
i=1

1Yi 6=fj(Xi),(5.3)

whereas Wt > 0 is such that
∑M

j=1 ŵt,j = 1 and λ > 0 is a temperature parameter. Eventually, we
proceed to the final step called ”mirror averaging” and construct the final weights :

ŵj =
1

n

n∑
t=1

ŵt,j .(5.4)

We hence obtain an aggregate called mirror averaging (MA) defined as f̂MA(·) =
∑M

j=1 ŵjfj(·).

2. In Barron and Leung [2006], it is proved that in the context of linear regression, we can calculate the least-square
projections and the associated aggregate with the same sample.
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Result of the experiment
Following the aggregation scheme of Section 5.2, we divide the sample into two parts. The first part

of the sample (n1 = 506 patients chosen randomly) is used to construct the family of classifiers Φ =
{ftot, f1, . . . , f8}, where multinomial logistics are performed on this primary set of patients. Then, we
use the second subsample of n2 = 506 patients to construct the Mirror Averaging aggregate f̂MA(·).

The evolution of the performances of each MLR are given in Figure 5.3 below.

Figure 5.3 Evolution of the empirical risk rt,j of each fj ∈ Φ over n2 = 506 patients.

We can note that ftot, the multinomial logistic regression based on the whole set of variables X1, . . . , X8

has a good accuracy (3.16%) whereas other regressions give intermediate results from 8.49% for f3 to
24.7% for f5.

Then, we can proceed to the sequential construction of weight. Figure 5.2 below shows the evolution
of the weights with small temperature parameters λ = 0.001 and λ = 0.01.

(a) λ = 0.001 (b) λ = 0.01
Figure 5.4 Evolution of weights defined in (5.3) with n2 = 506 and small temperature parameters.

The influence of λ can be seen in the vertical axe. The sequence of weights can also be computed with
greater temperature parameters λ = 0.1 and λ = 1.
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(a) λ = 0.1 (b) λ = 1
Figure 5.5 Evolution of weights ŵt,j defined in (5.3) with n2 = 506 and large temperature parameters.

Here, the influence of ftot is significantly higher. This is due to the high values of the temperature
parameters. It shows rather well that by increasing the value of the temperature parameter in (5.3), we
lead to an ERM strategy, where the second sample is used as a test set.

Eventually, we proceed to a leave-one-out cross validation method in order to calculate the accuracy
of each aggregate f̂MA for various temperature parameters. The result of this study shows that λ = 0.38
is the best compromise. It gives a prediction error of 2.766798% of misclassification which is detailled
for each fibrosis stage in the following table :

Conclusion
This section illustrates the power of aggregation in fibrosis staging based on blood-tests. It can be

seen as a first attempt into the development of non-invasive methods with statistical learning.

5.3 Sport analytics with SVM [L13]

Sports analytics is an emerging field especially in the US (see Alamar [2013] for a survey 3). The
principle is to integrate statistics and data analysis into decision-making strategies for general managers,
coaches and other professionals. It was initiated with sabermetrics (the empirical analysis of baseball)
by Bill James and Nate Silver (see Silver [2007] for instance). Nowadays, analytic tools and data grow
increasingly complex. One of the biggest challenges is to identify the most useful pieces of data, and then
put into a player/coach decision. In this section, we propose a modest contribution to the field that deals
with Basketball. We present a collaboration with ITNoveo, a small industry in Information Technology
which gives rise to a smartphone application of sports analytics called Youscore.

Presentation of the smartphone application
Youscore is a mobile application designed by the general manager of ITNoveo, phd in computer science.

It allows to broadcast a game play by play with a smartphone or a tablet. Watching a game, you make
the score growing. Instantaneously, the scenario is available live for all the other users.

Recently, we proposed to go further. It was natural to add a statistical plug-in to use the information
of the game broadcasted with Youscore. YouScorePredict (YSP) expects to predict the issue of the game.
A Beta version can be downloaded on the Google Play Store here :

https://play.google.com/store/apps/details?id=fr.youscore.android.youscorepredictplugin

Material and methods
We have chosen in this problem a purely statistical learning point of view by collecting a database of

n = 1222 past games of the last NBA season. The play-by-play scenario of any NBA game can be find
on the ESPN website 4. We developed a BASH script that is able to download hundreds of games based

3. We can also refer to the blog of Nate Silver at http://fivethirtyeight.com/.
4. An example can be found here : http://scores.espn.go.com/nba/playbyplay?gameId=400489851&period=0.

https://play.google.com/store/apps/details?id=fr.youscore.android.youscorepredictplugin
http://fivethirtyeight.com/
http://scores.espn.go.com/nba/playbyplay?gameId=400489851&period=0
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on the gameId given by ESPN. This script produced a set of 1222 HTML files, one for each game. These
HTML files are nothing but structured data trees and can be represented in the memory of a computer
as a DOM (Document Object Model). Exploring these raw HTML files, we can extract the evolution of
the score and ignore all the other non relevant information. This has been done with DOM inspection
techniques (see for instance Resig [2006]). After this process, we obtain n = 1222 flat plain text files,
containing n lines. A given line contains 3 variables : the time of the basket, the home team score, and
the visitor team score. Eventually, we come up with Zn = {Z1, . . . , Zn}, where each Zi, i = 1, . . . , n
corresponds to the play-by-play evolution of game number i (that is the difference between the home
team score and the visitor team score at each time). Then, we employ SVM to this database.

Figure 5.6 Evolution of 3 different play-by-play.

SVM is now a standard learning system based on recent advances in statistical learning theory
(see Vapnik [1998]). It was originally proposed in Boser, Guyon, and Vapnik [1992] to solve the binary
classification problem as follows. Consider a learning sample {(x1, y1), . . . , (xn, yn)}, where to each input
xi ∈ Rp corresponds a binary response yi ∈ {−1,+1} 5. Given an input x, it is possible to use a real-
valued function f : Rp → R to assign the class of x : if f(x) ≥ 0, x is supposed to be in the positive class,
and otherwise to the negative class. Linear discrimination (or perceptrons) considers the case where f(x)
is a linear function of x ∈ Rp, so it can be written as :

fw,b(x) = 〈w, x〉+ b,(5.5)

where (w, b) are the parameters that control the decision rule given by sign(fw,b). The idea of SVM is to
learn from the learning sample {(x1, y1), . . . , (xn, yn)} these parameters, by giving an hyperplane which
optimally separates the two classes.

In the linear case (4), (w, b) is defined to solve the following optimization problem :{
min ‖w‖2 + C

∑n
i=1 ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . n,
(5.6)

where ξi ≥ 0 are slack variables and C > 0 is a regularization parameter that avoids overfitting. The
unique solution of this problem gives the so-called soft margin hyperplane with geometric margin γ =
1/‖w‖2 (the distance between the hyperplane and the nearest sample of each class).

Eventually, the kernel method of SVM is defined as a soft margin hyperplane in a high dimensional
feature space, using a kernel function k as in Section 5.1. More precisely, deriving the primal Lagrangian
for the optimization problem gives rise to the following objective function :

W (α) =

n∑
i=1

αi −
1

2

l∑
i,j=1

yiyjαiαj

(
〈xi, xj〉+

1

C
δij

)
,

where δij is the Kronecker δ defined to be 1 if i = j and 0 otherwise. To move to the more general kernel
version, we have to replace in W (α) the scalar product 〈xi, xj〉 by the quantity k(xi, xj). The decision

5. In the sequel, the output of a game x corresponds to the win (y = 1) or loss (y = 0) of the home team
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rule is given by :

sign(f(x)) = sign

(
n∑
i=1

α∗i k(xi, x) + b∗

)
.

It is equivalent to the hyperplane in the feature space implicitly defined by the kernel k. We refer the
interested reader to Cristianini and Shawe-Taylor [2000] for a complete and readible introduction about
SVM.

Experimental results
The problem we have at hand depends on time t when the user want to ask for a prediction. Let

us fix an arbitrary time t that could be chosen by the user. Given t, we construct a training set Dn =
{(Xi, Yi), i = 1, . . . , n} of n = 1222 games based on the previous database Zn = {Z1, . . . , Zn}. Each Zi
gives the entire score evolution from the first basket to the last basket. We can then stop at time t for
any given t. However, the length of this ”play-by-play” evolution until time t differs since the number
of baskets is not the same for two distinct games. Then, we propose to choose a bandwidth of length
h ∈ N∗ to look at the last h baskets. Interestingly enough, this bandwidth has to be chosen adequately.
In the sequel, we use simple cross-validation methods to choose a fixed (i.e. indepent of t) value for h. A
good bandwidth is around h = 30 baskets. It gives a vector Xi ∈ R30, where each dimension corresponds
to a basket. Then, an associated class Yi ∈ {−1, 1} is observed for these games, where Yi = 0 when the
home team looses the game (and Yi = 1 for a win).

We have a training set (Xi, Yi), i = 1, . . . , n where Xi ∈ Rh and Yi ∈ {−1, 1}. The SVM machinery
is used with software R, using library kernlab. We use a Gaussian kernel with bandwidth selected with
V -fold cross-validation, with V = 5. The results of the associated cross-validation errors are illustrated in
Figure 5.7 below, where the algorithm gives quite good results compared with a simple - but also accurate
- strategy that gives class 1 to Xi when the home team leads the score at time t, and 0 otherwise (this
strategy is called ”basic fan” in the sequel).

The performances of the method is illustrated for h = 30 and different values of t (see Figure 5.7
below). Of course, when the prediction is performed at the end of the game, the performances are very
good (around 95% at origin of the horizontal axe in Figure 5.7). The performances of YSP prediction
rule based on SVM on the past 30 baskets are better than the basic fan. The basic fan still predicts that
the winner of the game is the winner at time t. As a result, at the end of the game, this strategy is very
efficient. Nevertheless, when we go earlier in the game, our method outperforms the basic fan. It means
that by looking at the 30 last baskets and performs a kernel method, we can extract more information.
Of course, better results could be expected by a painstaking calibration of h. For instance, it is clear
that the optimal value of h depends on time t when the prediction is performed. It could be a way of
improving these results. We can also mix several strategies, such as SVM with the basic learner in order
to outperform a single method.

Conclusion
As a conclusion, we have built an operational prediction rule for Basketball using andröıd system. This

method permits to forecast the winner of a game by loading the play-by-play score evolution live. Many
advancements could be considered in the future. From the statistical viewpoint, some hyper-parameters
could be calibrated in the method, such as the window h in the database. Another direction will be to
advance different prediction methods such as Random Forest or possible aggregates. Another track could
be to take into account several statistical informations such as the field goal percentage of several key
players, or any other information (rebounds, assists, dunks and so on). Eventually, this problem could
also be viewed as an online learning problem where at each time t, we want to predict the next event. In
this case, we could aggregate several expert’s advices (which have to be constructed) and lead to good
accuracy at the end of the game. This problem is more challenging since horizon T is not very high in
this case (around 100 events for a NBA basketball game).
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Figure 5.7 Prediction accuracy of YSP (red line) against the basic fan (black line). The horizontal axe
gives time t (time left in minuts) when the prediction is performed. The basic fan still predicts that the

winner of the game is the winner at time t.
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Open problems

We have presented recent contributions in learning theory that I hope will shed some light into
the connections between mathematical statistics and machine learning. As a conclusion, we list several
open problems. Some of them are just minor extensions of the results of this habilitation whereas other
ones need more investigation. By the way, the present manuscript raises many questions that could be
adressed in the future.

Open problems related with ISL (Inverse Statistical Learning)

Open problem 1: At the light of Chapter 2, the study of the minimax rates of convergence in discrimi-
nant analysis is not completely satisfactory. In the plugin framework, lower bound holds for particular
margin parameters α ≤ 1. The main problem with this lower bound is the opposition between the margin
assumption and the noise assumption. It makes the construction of a good hypothesis family very nasty
in Lemma 1. Indeed, in standard lower bounds in classification with Assouad’s lemma, the marginal
densities are very irregular. Here, due to the assumption on the inverse problem, we need to consider
cosine type densities, as in Butucea [2007]. An open problem is to get the same result for any α ≥ 0.

Open problem 2: In the Hölder boundary case, while I’m writing this dissertation, minimax rates
remain an open problem. We have spent many time with Clément Marteau to this end. From my point
of view, the problem comes from the upper bound, and precisely the proposed plug-in procedure. Indeed,
the regularity assumption deals with the boundary of G?K whereas the proposed estimators deal with
the conditional densities. A possible direction for a future attempt in to try to compute the operator of
inversion in our problem. In other words, what is the expression of operator A in the following equation :

G?η = {x ∈ Rd : xd ≤ Ab?(x1, . . . , xd−1)} ∈ arg min

{
1

2

(∫
GC

f ∗ ηdQ+

∫
G
g ∗ ηdQ

)}
,

where G? := {x ∈ K : b?(x1, . . . , xd−1) ≤ xd} is the minimizer of the Bayes risk.

Open problem 3: Another point of view in inverse statistical learning would be to try to classify a
new observation Z = X + ε, in the presence of errors in variables. Is it necessary in this case to use
an indirect approach with deconvolution kernel ? This question has been already investigated in test
theory by Clément Marteau (see also his habilitation thesis), where direct approaches are proposed for
inverse problems. In the classification setting, we need to compute the margin parameter in the presence
of errors-in-variables, which is a rather difficult task, since the noise assumption is global whereas the
margin is local.

Open problem 4: In this manuscript, we do not adress the problem of model selection of the hypothesis
space. In Chapter 3, we spend some time to select the bandwidth in a fixed model G, or equivalently for a
fixed number of clusters k in clustering. An open problem is to offer penalization techniques. We believe
that this is possible, since model selection and risk bounds use the same machinery (see for instance
Massart [2007], van de Geer [2000] or Koltchinskii [2006]).

Open problem 5: In Chapter 2, we conduct the main lower and upper bounds in the context of discrimi-
nant analysis. In the direct case, Mammen and Tsybakov [1999] propose a minimax study in discriminant
analysis whereas Audibert and Tsybakov [2007] study the classification context. The minimax study of
this thesis could be moved to the classification setting with simple modifications.
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Open problem 6: In all this study, we restrict ourselves to moderately ill-posed inverse problems,
namely a polynomial decreasing of the characteristic function of the noise density (or more generally
the spectrum of operator A). Extensions to exponentially decreasing cases could be done. This will
deteriorate the rates exactly as in standard statistical inverse problem. More precisely, the lipschitz
constant c(λ) in Definition 2 of Chapter 2 will have an exponential behaviour. Of course, fast rates are
prohibited in this case.

Open problem 7: It is quite standard in statistical inverse problem to consider a noisy operator A.
In errors-in-variables model, it corresponds to an unknown noise density which has to be estimated
thanks to repeated measurements. In our framework, the empirical risk will be modified by plugging an
estimation of the Fourier transform of the noise. This framework could be adresses in the future from the
theoretical point of view, where a more complicated empirical process theory has to be performed. This
problem was considered in the simulation computation of Noisy k-means, where we add this estimation
step in the algorithm thanks to an i.i.d. sample εu, u = 1, . . . ,m. It does not deteriorate the results, at
least from a practical point of view.

Open problem 8: The construction of noisy k-means reveals an interesting phenomenon in Theorem
8. In the direct case, the k-means construction is based on :

ĉ`,j =

∑n
i=1

∫
Vj
x`δXidx∑n

i=1

∫
Vj
δXidx

,

whereas the noisy k-means is defined according to :

c̃`,j =

∑n
i=1

∫
Vj
x`K̃h(Zi − x)dx∑n

i=1

∫
Vj
K̃h(Zi − x)dx

.

To build a noisy version of the k-means, we just need to put a deconvolution kernel centered at each
observations, instead of a Dirac function. A natural question is the following : can we use this simple
trick to produce other noisy algorithm, such as a Noisy SVM or any other kernel method for instance ?

Open problem 9: Open problem 8 suggests to put a deconvolution kernel at each observations. In the
direct case as well, we could put a standard kernel instead of a Dirac function at each observations. In this
case, we smooth the minimization problem and we conjecture that the dependence on the initialization
could be reduced. Unfortunately, at the same time, we add a bias in the estimation procedure. An
interesting direction is to test this procedure numerically. Is there an adequate choice of the kernel (and
the bandwidth) in order to trade off these two opposing phenomena (namely convexifiation and bias) ?

Open problems related with bandwidth selection

Open problem 10: The choice of the bandwidth in noisy k-means suffers from the non-convexity of the
k-means loss function. Indeed, the theoretical results of Chapter 3 provides two bandwidth selection rule
for noisy k-means. Unfortunately, these methods depend on the global minimizer of the deconvolution
empirical risk, which is not available in practice. An open problem is to derive a data-driven selection
rule which takes into account this difficulty. One could think for instance at the following procedure in
the isotropic case :

ĥ = max
{
h ∈ ha : R̂h′(ĉh,i∗h)− R̂h′(ĉh′,i∗

h′
) ≤ 3δh′ , ∀h′ ≤ h

}
,

where for a given h, ĉh,i∗h is the solution of the noisy k-means algorithm with initialization i∗h minimizing

the empirical distortion R̂h(ĉh,i), for different i = 1, . . . , I initializations.

Open problem 11: The choice of k is not adressed in this manuscript. In the direct case, there exists
several methods, based on the clustering with different values of k, and a minimization (or maximization)
of some criterion (see Fischer [2011] and the references therein). In the presence of noisy observations,
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this problem is interesting since the additional noise could hide the presence of some clusters. At the first
glance, we could applied standard methods based on the observations of a distortion (see for instance
the ”Gap statistics” in Tibshirani, Walther, and Hastie [2001]), where we replace the direct distortion
by the deconvolution distortion with a suitable deconvolution kernel.

Open problem 12: Chapter 3 proposes two different selection rules based on Lepski’s contributions.
In the isotropic case, we compare empirical risks instead of estimators whereas for the anisotropic case,
we compare empirical gradients to estimate a bias variance decomposition. Of course, for a real hyper-
parameter λ > 0, we can compare empirical gradients instead of empirical risks in the standard Lepski’s
procedure. It might give a method easier to calibrate since it does not depend on the margin constant.

Open problem 13: A credible application of the bandwidth selection method of Chapter 3 is the
problem of image denoising. It is well-known that linear estimates can degrade dramatically if the random
noise obeys a non-Gaussian distribution. Then, using for instance a Huber loss, we could investigate
numerically the problem of anisotropic bandwidth selection in image denoising with Local Polynomial
Approximation.

Open problem 14: In the bandwidth selection method presented in Section 3.2, we restrict ourselves
to a finite dimensional space Rm, where m ≥ 1 is the (small) dimension of the parameter space. Many
statistical problems could be treated. However, a natural extension to the high dimensional setting is an
appealing open problem.

Open problems related with online learning

Open problem 15: In online learning, the use of exponential weighted averages, as well as Gibbs
measure, is motivated by standard PAC-Bayesian bounds such as in Mac Allester [1998], which states
that for any prior π, with proba greater than 1− ε, for any posterior ρ, we have the following bound :∣∣∣Ef∼ρR(f)− Ef∼ρR̂(f)

∣∣∣ ≤√ log(4nε−1) +K(ρ, π)

2n− 1
.

Then, minimizing the RHS leads to a Gibbs measure ρ by the Kullback duality formula.
Seeger [2008] proposes a simple proof of this inequality. It is based on the convex duality formula

(see equation (4.9) in Chapter 4). However, similar duality formula arises for more general divergence
such as Bregman divergences defined as :

DΦ(ρ, π) = Φ(ρ)− Φ(π)− 〈ρ− π,∇Φ(π)〉,

where Φ is a strictly convex and differentiable function and 〈·, ·〉 is the scalar product (such as the
negative entropy Φ(p) =

∑p
j=1 pj log pj for the Kullback-Leibler divergence). Using such a divergence

and the general convex duality argument (see Rockafellar [1970]), we can conjecture that for any prior
π, with proba greater than 1− ε, for any posterior ρ :∣∣∣Ef∼ρR(f)− Ef∼ρR̂(f)

∣∣∣ ≤
√

Ψ(ε−1) +DΦ(ρ, π)

γn
,

where Ψ comes from the convex duality function of ρ 7→ D(ρ, ·) and γn is an increasing sequence with
n. This could lead to other randomized sequential procedure such as for instance polynomial weighted
averages.

Open problem 16: We can extend the result of Section 4.2 to the standard i.i.d. case by considering a
mirror averaging as it is proposed in Section 4.1. We can also consider the high dimensional setting, where
xt ∈

∏p
j=1 Rmj , with mj >> T . In this case, using a slightly modified prior, we can get a sparsity regret

bound where the sparsity is measured thanks to the standard `0-norm with respect to the coordinate of
each cluster’s center. This framework could be also investigated in high dimensional sequential clustering.
In this case, the number of clusters has to be fixed in the algorithm as a small value (in comparison with
T ). An open problem is to propose at the same time model selection clustering and high dimensional
clustering.
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Open problem 17: The algorithm of Section 4.2 could be seen as an alternative of standard kernel-
based method in local regression. In Chapter 3, we consider a local M -estimator of the regression function
at a fixed point x0 as :

f̂h(x0) = arg min
1

n

n∑
i=1

YiKh(Xi − x0),

where Kh is a kernel function that gives more weights to the points at a neighborhood of x0. Instead,
we can consider a similar local estimator but where localization is performed based on a pre-processing
clustering. For this purpose, in the i.i.d. case, we can introduce a mirror averaging estimator based on
the sequential procedure of Section 4.2. In this case, localization takes into acccount the structure of the
data points. It could be useful in a high dimensional setting where kernel estimators are prohibited.

Open problem 18: The computation of algorithms presented in Chapter 4 remains an hard issue.
Recent works has been proposed in the literature of prediction with sparse single index models (see
Alquier and Biau [2013]), sparse additive model (see Alquier and Guedj [2013]) or high dimensional linear
regression (see Dalalyan and Tsybakov [2012]). In these studies, MCMC methods appears to be efficient
to approximate the Gibbs posterior in these sequential algorithms. We are currently implementing these
MCMC for sequential clustering but that’s another story !



Epilogue

Cet été 2014 fut entièrement dédié à la rédaction de ce mémoire, enfin presque. Comme vous avez pu
le remarquer, ce manuscrit se concentre sur le problème de classification (supervisée et non-supervisée).
Cette discipline me suit depuis mes premiers pas en thèse, jusqu’aux derniers résultats Pac-Bayésien en
prévision de suites individuelles. Cet été 2014 fut donc l’occasion de compiler certains de ces résultats,
mais pas seulement. Cela, grâce - ou à cause - de quelques retraités du Val-de-Marne passionnés de
rosiers, et plus précisément des rosiers Noisettes.

Nous avons entrepris cet été 2014 un vrai travail de taxinomie, l’essence même de la classification,
version botaniste. Une visite de Laurence il y a quelques mois dans mon bureau, munis d’un poster
avec 1232 mesures d’inflorescence, rameaux, folioles, épines, pétales, sépales réalisées par les ”Amis de la
Roseraie du Val-de-Marne” est à l’origine de ce travail. S’en suit l’encadrement d’un mémoire de M1 sur
le sujet, puis ce stage estival avec Charline Bris, embauchée comme ingénieur de recherche sur le projet
”Classification des rosiers noisettes”. Ces quelques lignes synthétisent ce travail de classification.

En 1899, dans le Journal des roses d’octobre, Pierre Guillot (1855-1918) écrit :

Le Rosa Noisettiana type est un arbuste dont les rameaux sont nombreux, sarmenteux,
buissonnants, terminés par de très grosses ombelles de petites fleurs blanches, roses, pourpres,
blanc carné, jaunes, selon les variétés. Parmi les formes qui en sont issues, la plus grande partie
est à grandes fleurs, ce qui est le contraire du type ; l’inflorescence n’a plus la même forme et
se rapproche beaucoup de celle du R. Indica.

A notre avis, cette race R. Noisettiana ne devrait comprendre que les variétés du type,
comme :
Aimée Vibert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vibert 1828
Bougainville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P. Cochet 1824
Caroline de Marniesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Roeser 1848
Octavie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Vibert 1845
Ophirie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Goubault 1841
W.-A Richardson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ve Ducher 1878

[...] Quant aux autres, leur regroupement est tout indiqué : on devra les placer avec les
Rosiers thé à rameaux sarmenteux, de manière à laisser à chaque série le caractère spécial
qui lui est propre.
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Dans les numéros de septembre, octobre et novembre 1899 du Journal des roses, Simon Sirodot4, après
avoir remarqué que les mêmes variétés cultivés en plusieurs exemplaires ont des différences, notamment
de forme, proposose une classification des rosiers Noisette en 10 sections.

Figure 1 – Les 10 sections de Sirodot

En s’inspirant de Kuentz-Simonet, Lyser, Candau, Deuffic, Chavent, and Saracco [2012], nous avons
effectué plusieurs classifications ascendantes hiérarchiques (CAH) sur notre échantillon de rosiers à partir
de variables synthétiquent issues d’une analyse en correspondance multiple. Voici le dendogramme associé
à 15 variables synthétiques qu’il reste à interpréter avec ”Les Amis de la Roseraie du Val-de-Marne” :

4. Simon Sirodot (1825-1903) : Membre correspondant de l’Académie des Sciences, section de Botanique et de la Société
Nationale d’agriculture, section d’Histoire naturelle.
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de l’I.H.E.S, 81 :73–205, 1995.

[163] F Tian, P.J. Bradbury, P.J. Brown, H Hung, Qi Sun, S Flint-Garcia, T. R. Rocheford, M. D. McMullen, J. B.
Holland, and E. S. Buckler. Genome-wide association study of leaf architecture in the maize nested association
mapping population. Nature Genetics, 43 :159–162, 2011.

[164] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a dataset via the gap statistic. Journal
of the Royal Statistical Society, 63 :411–423, 2001.

[165] A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Ann. Statist., 32(1) :135–166, 2004.
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